

Diffeology, Groupoids & Morita Equivalence

Nesta van der Schaaf

nestavanderschaaf@gmail.com

Supervisor: Prof. dr. N.P. Landsman Second Reader: Dr. I.T. Mărcuț

26th June, 2020

General Idea: Diffeological Groupoids

- *Diffeological space* = generalised smooth space.
- *Groupoid* = generalised symmetry.
- *Diffeological groupoid* = generalised smooth symmetry.

Used in:

- General relativity
 - Blohmann, Fernandes, Weinstein, arXiv:1003.2857,
- Singular foliations & algebroids
 - Garmendia, Zambon, arXiv:1803.00896,

Jan Głowacki's MSc thesis.

 Androulidakis, Zambon. Integration of singular subalgebroids. (In preparation.)

- (Differentiable) Stacks
 - Watts, Wolbert, arXiv:1406.1392.

General Idea: Morita Equivalence

- Origin: Morita equivalence of *rings* (Morita, 1950s):
 - $R_1 \simeq_{\mathrm{ME}} R_2$ iff equivalent rep. theory.

- Morita equivalence of C*-algebras (Rieffel, 1970s).
- Morita equivalence of *Lie groupoids* (1980s).

General Idea: Morita Equivalence

There are two ways to define Morita equivalence:

- Internally: the existence of a special 'bimodule'.
- Externally: as an isomorphism in a category.

Morita's Fundamental Theorem (1958)

These definitions are the same.

Our Main Theorem is a version of this:

Our Morita Theorem

A diffeological bibundle between diffeological groupoids is weakly invertible if and only if it is biprincipal.

- Groupoids
 Diffeological Groupoids
- Diffeology
- (Diffeological) Bibundles
- Biprincipality (of Bibundles)
- Weak Invertibility (of Bibundles)

- (= 'special bimodules')
- (= 'isomorphism in category')

Diffeology

• Throughout, fix a set X.

Definition

A Euclidean domain is an open subset $U \subseteq \mathbb{R}^m$, for some $m \in \mathbb{N}_{\geq 0}$.

Definition

A parametrisation is a function $U \longrightarrow X$ defined on a Euclidean domain.

Diffeology

• Determines which parametrisations are 'smooth'.

Definition

A *diffeology* is a subset $\mathcal{D} \subseteq Param(X)$, whose elements are called *plots*, satisfying three axioms:

Constant maps $U \longrightarrow X$ are plots.

Plots can be reparametrised by smooth functions $V \longrightarrow U$. If $U \longrightarrow X$ is locally a plot everywhere, then it is a plot.

A pair (X, \mathcal{D}_X) is called a *diffeological space*.

Smooth Maps

- Plots are the 'smooth' functions $U \xrightarrow{\alpha} X$.
- A function $f: X \longrightarrow Y$ gives a composition $U \xrightarrow{\alpha} X \xrightarrow{f} Y$.

Definition

A function $f: (X, \mathcal{D}_X) \longrightarrow (Y, \mathcal{D}_Y)$ is *smooth* if it takes plots to plots:

 $\forall \alpha \in \mathcal{D}_X \text{ we have } f \circ \alpha \in \mathcal{D}_Y.$

- Param(X) is always a diffeology.
 - Every $Z \longrightarrow X$ is smooth.
- $\mathcal{D}_X = \{$ constant parametrisations $\}$ violates Locality.
- $\mathcal{D}_X = \{ \text{locally constant} \}$ does form a diffeology.
 - Every $X \longrightarrow Y$ is smooth.

Manifolds as Diffeologies

- Every smooth manifold M gets a canonical diffeology \mathcal{D}_M .
 - Plots are just the usual smooth functions!
- We get a fully faithful embedding:

Manifold \longrightarrow Diffeology.

Quotients

- Let \sim be any equivalence relation on X.
- The quotient space X/\sim always has a natural diffeology.
- Important example, the *irrational torus*:

 $T_{\theta} := \mathbb{R}/(\mathbb{Z} + \theta\mathbb{Z}).$

- Is topologically trivial,
- but carries non-trivial diffeological information!

Function Spaces & Convenience

- Let X and Y be diffeological spaces.
- Then $C^{\infty}(X,Y)$ itself has a natural diffeology!
- More generally, typical ∞-dimensional manifolds all embed fully faithfully into Diffeology.

Convenience Theorem

Diffeology is complete, cocomplete and Cartesian closed.

Groupoids

The idea: *Groupoid* = group with *partially defined* multiplication.

Definition

A groupoid $G \rightrightarrows G_0$ consists of:

- Set of *objects* G_0 ,
- Set of *arrows* G (between objects).

Arrows $g \in G$ denoted $g : x \to y$, for objects $x, y \in G_0$. Together with five *structure maps:*

- Unit groupoid: $A \rightrightarrows A$.
 - $G_0 = A$ is an arbitrary set.
 - Only identity arrows.
 - All structure maps are id_A , no non-trivial multiplication.
- Pair groupoid: $A \times A \rightrightarrows A$.
 - $G_0 = A$ is an arbitrary set.
 - For every two points $a, b \in A$, there is a *unique* arrow $a \to b$.
 - Denote this arrow by $(b, a) : a \to b$. This means $G = A \times A$.
 - Structure maps:

$$s(b,a) = a, \quad \text{and} \quad t(b,a) = b,$$

$$(c,b) \circ (b,a) := (c,a).$$

- Any group G is also a group oid $G \rightrightarrows 1$:
 - $G_0 = 1 = \{*\}$ is the one-point set.
 - Arrows are just the group elements G.
 - Groupoid composition is the group multiplication:

- Any vector space V gives the general linear group GL(V).
 - Contains linear isomorphisms $V \longrightarrow V$.
- Now take a collection E of vector spaces V_x , indexed by $x \in M$, e.g. a smooth vector bundle $E \longrightarrow M$.
- For each x we still get $GL(V_x)$.
- ▶ But we can also look at linear isomorphisms V_x → V_y.
- ► Thus we get a groupoid: GL(E) ⇒ M, the general linear groupoid.
- If E → M is a smooth vector bundle, it is a Lie groupoid.

Diffeological Groupoids

• Diffeological groupoid = groupoid + diffeological structure.

Definition

A diffeological groupoid is a groupoid $G \rightrightarrows G_0$, where G_0 and G are equipped with diffeologies, such that all structure maps become smooth.

Groupoid Actions

- Groupoid action = generalisation of group action.
- The idea: a *partially defined* group action.

Definition

A smooth left groupoid action of $G \rightrightarrows G_0$ on X consists of:

- A smooth function $l_X : X \to G_0$.
- A function

$$(g, x) \longmapsto g \cdot x \in X,$$

only defined if $s(g) = l_X(x)$.

This has to be smooth in both g and x. We write:

 $G \curvearrowright^{l_X} X.$

• Groupoid multiplication from the left:

$$(g,h)\longmapsto g\circ h.$$

• Groupoid actions of $G \rightrightarrows 1$ are just group actions.

Definition

We assume a similar definition for smooth right groupoid actions:

 $X \xrightarrow{r_X} \cap H.$

Groupoid Bibundles

- The idea: analogue of bimodules for rings/algebras.
- That is: *Bibundle* = 'compatible' smooth left- *and* right actions.

Definition

A (diffeological) bibundle consists of:

•
$$G \curvearrowright^{l_X} X$$
, • $X^{r_X} \frown H$

such that the actions commute. We write:

 $G \curvearrowright^{l_X} X \xrightarrow{r_X} \frown H.$

Groupoid Bibundles

• X is a 'bundle' over G_0 and H_0 simultaneously:

• A bibundle $G \curvearrowright^{l_X} X \xrightarrow{r_X} H$ is a new type of morphism $G \xrightarrow{X} H$.

Morita Equivalence

• The idea: existence of a 'nice' bibundle.

Definition

A bibundle $G \curvearrowright^{l_X} X \xrightarrow{r_X} H$ is called *biprincipal* both actions are *'nice'*; in particular they are *free* and *transitive*.

• Meaning: the actions of G and H 'fill in' the entire X:

Morita Equivalence

Internal Definition

We say $G \rightrightarrows G_0$ and $H \rightrightarrows H_0$ are **Morita equivalent** if there exists a biprincipal bibundle between them. In that case we write $G \simeq_{ME} H$.

The Orbit Space

 Important 'quantity' of a groupoid G ⇒ G₀: which objects are 'connected'.

Definition

The *orbit* of an object $x \in G_0$ is:

$$\operatorname{Orb}_G(x) := \{ y \in G_0 : \exists x \xrightarrow{g} y \}.$$

The collection of all orbits is denoted G_0/G , the orbit space.

• As a quotient, it is naturally a diffeological space.

Morita Equivalence

• The interpretation is that Morita equivalence measures:

- The 'connectedness',
- but also the way in which objects are connected.
- In particular:

Theorem

If $G \simeq_{\mathrm{ME}} H$ then $G_0/G \cong H_0/H$.

• More generally:

Morita equivalence preserves: orbit space + 'isotropy data'.

- Unit groupoids: $A \rightrightarrows A$ and $B \rightrightarrows B$ (recall: only identity arrows):
 - The orbit spaces are just A and B.
 - There is no non-trivial isotropy data,
 - preservation of orbit spaces is all that matters:

$$(A \rightrightarrows A) \simeq_{\mathrm{ME}} (B \rightrightarrows B)$$
 iff $A \cong B$.

- Pair groupoids: $A \times A \rightrightarrows A$ (recall: $\exists !a_1 \rightarrow a_2$) are 'the most trivial':
 - The orbit spaces are trivial,
 - contains only trivial isotropy data, so:

$$(A \times A \rightrightarrows A) \simeq_{\mathrm{ME}} (1 \rightrightarrows 1).$$

- Morita equivalence for groups $G \rightrightarrows 1$ is just isomorphism.
 - Orbit spaces are trivially preserved: $1 \cong 1$,
 - now isotropy data (i.e. the group structure) is all that matters:

 $(G \rightrightarrows 1) \simeq_{\mathrm{ME}} (H \rightrightarrows 1)$ iff $G \cong H$.

A More Complicated Example

- Fix a space X that locally looks like U:
 - There exists local diffeomorphisms $U \longrightarrow X$ that cover X.
 - ▶ We call these '*charts*' on X.
 - ▶ The collection 𝔄 of charts is called an *atlas*.
- Just as for manifolds, we get *transition functions* between charts.
- These collect into a diffeological groupoid:
 - The transition groupoid: $\mathbf{Trans}(\mathscr{A})$.
 - This is not generally a Lie groupoid!

Theorem

If \mathscr{A}_X is an atlas for X, and \mathscr{A}_Y is an atlas for Y, then:

 $\mathbf{Trans}(\mathscr{A}_X) \simeq_{\mathrm{ME}} \mathbf{Trans}(\mathscr{A}_Y) \quad \text{iff} \quad X \cong Y.$

The Morita Theorem, Revisited

- We think of bibundles as morphisms $G \xrightarrow{X} H$.
- Composition of $G \xrightarrow{X} H$ and $H \xrightarrow{Y} K$ defined as:

$$X \otimes_H Y := \left(X \times_{H_0}^{r_X, l_Y} Y\right) / H.$$

- Hilsum-Skandalis tensor product,
- also known as the balanced tensor product.
- Diffeology is convenient!
- Gets a canonical bibundle structure:

$$G \curvearrowright X \otimes_H Y \curvearrowleft K,$$

representing an arrow $G \xrightarrow{X \otimes_H Y} K$.

The Morita Theorem, Revisited

- We get a (bi)category of diffeological groupoids and bibundles as morphisms.
- Weak invertibility = invertibility of bibundles in this category.
 - ▶ Concretely: $G \xrightarrow{X} H$ is *weakly invertible* if $\exists H \xrightarrow{Y} G$ such that

 $X \otimes_H Y = \mathrm{id}_G$ and $Y \otimes_G X = \mathrm{id}_H$.

Morita Theorem

Weak invertibility = *Biprincipality*.

Thanks for your attention!