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Symmetry in quantum mechanics

• Principle of relativity: laws of physics are invariant under
Lorentz transformations.

• States are unit vectors ψ,ϕ ∈ H.

• Under Lorentz transformations L ∈ P

ψ
L−→ ψ′

transition probabilities are conserved:

|〈ψ,ϕ〉|2 = |〈ψ′, ϕ′〉|2.

This is exactly what the principle of relativity implies.
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Representations in quantum mechanics

• Eugene Wigner (1902–1995) proved that the transformation

ψ
L−→ ψ′ must be realised by a unitary transformation D(L)

on the Hilbert space H:

ψ′ = D(L)ψ.

• Physically the states D(L2)D(L1)ψ and D(L2L1)ψ should be
the same.

• Since ψ and eiθψ represent the same physical state:

D(L2)D(L1) = ω(L2, L1)D(L2L1),

where ω(L2, L1) is a complex phase.

• D is known as a projective unitary representation.
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Elementary particles in quantum mechanics

• State space of a physical system is represented by a Hilbert
space H.

• Elements L ∈ G of symmetry group act on the Hilbert space
via the representation D(L)ψ.

• Subspace H0 ⊆ H corresponding to elementary particle.
• H0 should be transformed into itself.
• H0 should not have smaller subspaces that are invariant under

the symmetries.

• Therefore: elementary particles are defined as irreducible
projective unitary representations.
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Elementary particles in quantum mechanics

• Goal: classify the quantum elementary particles.

• When ω ≡ 1, D becomes an ordinary (non-projective) unitary
representation. These are easier to work with.

• Projective unitary representations are classified via ordinary
unitary representations (unirreps) of extensions of the
symmetry group.
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Spacetime symmetry groups: the Galilei group

• Non-relativistic spacetime: R× R3.

• The Galilei group G characterises Newtonian coordinate
transformations (c =∞):

spacetime translations: (t,x) 7−→ (t+ s,x + a)

spatial rotations: (t,x) 7−→ (t, Rx)

Galilean boosts: (t,x) 7−→ (t,x + tv).

• Formally G is a semi-direct product:

G = R4 o E(3) = R4︸︷︷︸
translations

o (R3 o SO(3))︸ ︷︷ ︸
boosts and rotations

.
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Spacetime symmetry groups: the Poincaré group

• Special relativistic spacetime: Minkowski space M.

• The Poincaré group P characterises (inhomogeneous)
Lorentz transformations:

spacetime translations: (t,x) 7−→ (t+ s,x + a)

Lorentz transformations: (t,x) 7−→ Λ(t,x).

• Formally P is also a semi-direct product:

P = R4 o L.
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Extensions and unirreps of the rotation group

• The rotation group SO(3) describes all rotations of
three-dimensional Euclidean space.

• Its relevant extension is SU(2).

• The unirreps of SU(2) are well-known: they are labelled by a
non-negative half-integer number j = 0, 12 , 1,

3
2 , . . . called spin.

The corresponding Hilbert space is H = C2j+1.
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Extension and unirreps of the Galilei group

• The extension of the Galilei group that we need is:

Ǧ = R5 o (R3 o SU(2)).

• The resulting unirreps are labelled by the three parameters:
• The mass of the particle: m ∈ R.
• The spin of the particle: j = 0, 12 , 1,

3
2 , . . .

• An additional parameter V ∈ R, interpreted as internal
energy.

• But: the internal energy V makes no difference for the
projective representations, so the elementary particles are only
labelled by mass m and spin j.
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Quantum elementary particles in Galilean spacetime

• Elementary particles are labelled by mass m and spin j.

• We have two physically relevant cases:
• m > 0, j = 0, 12 , 1,

3
2 , . . . (massive particles)

• m = 0, j = 0, 12 , 1,
3
2 , . . . (massless particles)

• Tachyons (m < 0) are allowed in this formalism. When charge
is taken into account, these can be interpreted as
anti-particles.
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Quantum elementary particles in Poincaré spacetime

• For the Poincaré group the relevant extension is:

P̌ = R4 o SL(2,C).

• The classification of the unirreps is as follows. It is sometimes
known as Wigner’s classification.

• The mass m.
• When m > 0 we also have a spin j = 0, 12 , 1,

3
2 , . . .

• When m = 0 we have instead a parameter h called the
helicity. It can be a real number (continuous spin), or any
half-integer: h = 0,± 1

2 ,±1,± 3
2 , . . .

• The continuous spin case does not occur in nature.

Nesta van der Schaaf 12th June 2017 Classical and Quantum Particles 12 / 14



Symmetry in quantum mechanics
Spacetime symmetry groups

Quantum elementary particles
Conclusion and outlook

IMAPP

Naturally occurring particles

• Actual elementary particles are classified by projective unirreps
of the Poincaré group P (the Galilei group is only an
approximate symmetry).

• The naturally occurring representations are as follows:
• m > 0, j = 1

2 : leptons and quarks.
• m > 0, j = 0: Higgs boson.
• m > 0, j = 1: electroweak bosons.
• m = 0, h = ±1: photons and gluons.
• m = 0, h = ±2: gravitons.
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Conclusion and outlook

• We have a formalism that predicts the existence of elementary
particles with familiar properties.

• The formalism does not tell us why only certain values of
mass and spin occur in nature.

• What is the exact relation between the classical and quantum
formalism?
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