Sejny Summer Institute 2022 Pointless Causal Spaces

Causality Without Points?

Nesta van der Schaaf based on work with Chris Heunen

School of Informatics, LFCS, University of Edinburgh

7th July 2022

The very broad general context:

Categorical Quantum Mechanics.

- Models & generalises QM using monoidal categories.
- Especially successful in quantum information theory.
- Extremely powerful and intuitive graphical calculus.

What is our problem (vaguely speaking)?

Problem

No rigorous theory of *time* in CQM.

With *tensor topology*¹ we get a framework for:

Tensor topology

Space in monoidal categories.

In (very) short, we want a framework of:

Goal

Spacetime in monoidal categories.

¹P. Enrique Moliner, C. Heunen and S. Tull. "Tensor Topology". In: *Journal of Pure and Applied Algebra* 224.10 (2020), p. 106378.

Motivation: why is this interesting?

Why we want to solve this problem:

- Relativistic categorical quantum mechanics.
 - Quantum teleportation.
 - No-signalling.
 - No-summoning, etc.
- Fundamental nature of causality?
 - Especially in quantum theory/quantum gravity.
 - In)definite causality?
- Applications in classical computer science (e.g. concurrency).

Classical causal structure of spacetime

Definition

A *spacetime* is an oriented and time-oriented connected Lorentzian manifold.

In a spacetime:

Causal structure of spacetime: causal relations

For the moment, fix a spacetime (M, g). Define:

- Chronology: x ≤ y iff there exists a smooth future directed timelike curve from x to y
- Causality: x ≺ y iff there exists a smooth future directed causal curve from x to y

We call these relations \ll and \prec the *causal structure* of (M, g).

Abstract models of spacetime

So, a spacetime (M, g) induces a type of structure (M, \prec, \ll) . Abstractly, such structures were first studied in

- E. H. Kronheimer and R. Penrose. "On the structure of causal spaces". In: *Mathematical Proceedings of the Cambridge Philosophical Society*. Vol. 63. 2. Cambridge University Press. 1967, pp. 481–501
- B. Carter. "Causal Structure in Space-Time". In: *General Relativity and Gravitation* 1.4 (1971), pp. 349–391

More recently (and famously):

 L. Bombelli, J. Lee, D. Meyer and R. D. Sorkin. "Space-Time as a Causal Set". In: *Physical Review Letters* 59.5 (3rd Aug. 1987), pp. 521–524

Recovering spacetime from causal structure

It turns out that there is a strong relation between spacetime structure and causal structure.

One of the first people to study this was Zeeman:

• E. C. Zeeman. "Causality Implies the Lorentz Group". In: *Journal* of Mathematical Physics 5.4 (1st Apr. 1964), pp. 490–493

They show the Lorentz group can be realised as *causality preserving bijections* of Minkowski space

Recovering spacetime from causal structure

Next, in

- S. W. Hawking, A. R. King and P. J. McCarthy. "A New Topology for Curved Space-Time Which Incorporates the Causal, Differential, and Conformal Structures". In: *Journal of Mathematical Physics* 17.2 (2 Feb. 1976), pp. 174–181
- D. B. Malament. "The Class of Continuous Timelike Curves Determines the Topology of Spacetime". In: *Journal of Mathematical Physics* 18.7 (1st July 1977), pp. 1399–1404
- it was shown that the timelike *continuous* curves in a spacetime determine its:
 - Smooth structure
 - Conformal structure

Recovering spacetime from causal structure

This was improved in the paper:

 K. Martin and P. Panangaden. "A Domain of Spacetime Intervals in General Relativity". In: *Communications in Mathematical Physics* 267.3 (1st Nov. 2006), pp. 563–586

where it was shown that the causal *relation* \prec of a globally hyperbolic spacetime fully determines its topology.

This suggests that causal structure is more fundamental than its

- Smooth structure
- Conformal structure
- Topological structure

Recovering spacetime from its causal structure

Conclusion:

Causal structure determines almost all of spacetime geometry!

So, we think, this justifies studying abstract spacetimes of the form

 (M,\prec,\ll)

7th July 2022

11/15

Motivation: our main problem

- Causality (even abstractly) of spacetimes is actually well-studied, so:
- Main idea: 'categorify' the causal structure of classical spacetime.
- Problem: tensor topology is *pointless*.

 $\operatorname{ZI}(\operatorname{Sh}(X)) \cong \mathcal{O}X$ and $\operatorname{ZI}(\operatorname{Hilb}_{C_0(X)}) \cong \mathcal{O}X.$

- Hence our typical notions of causality from spacetime do not carry over directly!
- We were led to think about causality without points...

Causality without points?

This was a technical motivation.

But there is also a philosophical argument from quantum theory:

 P. Forrest. "From Ontology to Topology in the Theory of Regions*". In: *The Monist* 79.1 (1st Jan. 1996), pp. 34–50

Quantum theory is probabilistic:

- The probability of e.g. an electron to occupy an exact point in spacetime is *zero*
- Rather, we assign probabilities of the electron to occupy regions

Hence it seems quantum theory also suggests the study of causality between *regions/systems/reference frames!*

Philosophical questions

For this summer school I want to propose the following (rather open-ended) questions:

• "What is causality without points, and what does that mean in (quantum) physics?"

More specifically:

- "Can we relate these ideas about regions to existing notions of (indefinite) causality in QM?"
- "Does it even make sense to study causality of regions in QM, or do we need something else?"

In my mini-course I will outline the mathematics needed to study causality of regions, and highlight a new result justifying the study of *'causal locales'*.

A more concrete proposal

Out of Sejny 2021 came a nice paper:

 P. Martin-Dussaud, T. Carette, J. Głowacki, V. Zatloukal and F. Zalamea. Fact-Nets: Towards a Mathematical Framework for Relational Quantum Mechanics. 1st Apr. 2022. arXiv: 2204.00335 [quant-ph]

Summary:

- A model of relational QM using fact nets:
 - Systems
 - Facts between systems

Hence I would like to investigate a more concrete problem:

• "Can we study (mathematically) causality in this framework?"

- Where:
 - Systems/reference frames represent abstract regions
 - How does causality interact with the facts?

THE UNIVERSITY of EDINBURGH

Thank you!

7th July 2022 16/15