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Abstract

In [Rie74b], Rieffel introduced (strong) Morita equivalence of C∗-algebras. Two C∗-algebras are
said to be Morita equivalent whenever there exists a so-called equivalence bimodule between them.
On the other hand, we have the more general notion of a C∗-correspondence. These generalise ∗-
homomorphisms, and form the arrows of a bicategory C∗Corr. Two C∗-algebras are equivalent in
this bicategory if there exists a weakly invertible C∗-correspondence between them. In this note we
provide a succinct account of what these notions mean, and prove that the two notions of (Morita)
equivalence coincide.

1 The idea of a bicategory
The notion of Morita equivalence was first introduced by Morita in [Mor58] to study modules over
rings. Vaguely speaking, two rings are Morita equivalent if their representation theory is equivalent.
This definition was later extended to the setting of C∗-algebras by Rieffel, first appearing in [Rie74b].

Almost a decade after Morita’s publication, we saw the introduction of bicategories by Bénabou
in [Bén67], and it became apparent that this was the right setting to develop Morita’s theory. (See
[JF15], and references therein, for more historical context.) We shall outline below, quite informally,
what it means for two objects in a bicategory to be equivalent. Then, in Section 2, we shall apply this
framework to the setting of C∗-algebras, and we will show that the bicategorical equivalences are exactly
the equivalence bimodules as introduced by Rieffel.

The notion of a 2-category arises quite immediately in the study of categories. It is an elementary
fact that the category Cat of all (small) categories with functors and natural transformations is a 2-
category1. Besides arrows between objects (as is inherent to any category), a 2-category contains also
morphisms between those arrows. These are called 2-morphisms, or 2-arrows. For Cat they are the
natural transformations between functors. They behave nicely with respect to their composition in the
sense that for any two objects x and y in a 2-category C, their set of 1-morphisms HomC(x, y) form a
genuine category when taking the 2-morphisms of C as their arrows. In this way a 2-category can also
be seen as a family of categories, indexed by pairs of objects in C. The composition in HomC(x, y) of
2-morphisms is called vertical composition. This may be depicted diagrammatically as

x y
α

β

vertical composition7−−−−−−−−−−−−−→ x y.β◦α
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1“Cat is the mother of all 2-categories, just as Set is the mother of all categories,” [Lac07].
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There is also a horizontal composition, commuting with vertical composition, in the guise of a functor
HomC(x, y)×HomC(y, z)→ HomC(x, z):

x y z

f1

g1

α

f2

g2

β
horizontal composition7−−−−−−−−−−−−−−→ x z.

f2◦f1

g2◦g1

β·α

The additional structure allows us to think of isomorphism between arrows, called 2-isomorphism,
which generalises the notion of strict equality between objects. This leads to, among other things, the
notion of a 2-commutative (or weakly commutative) diagram, which is a diagram that commutes only
up to 2-isomorphism. For example, we would say the square

A B

C D

f

h g

k

2-commutes if there exists a 2-isomorphism α : g◦f ⇒ k◦h, in which case we also write g◦f ∼= k◦h. The
notion of commuting only up to 2-isomorphism occurs already very early on in the theory of categories.
Recall that a functor F : C → D is called an equivalence of categories if there exists another functor
G : D→ C such that there are natural isomorphisms F ◦G ∼= idD and G ◦ F ∼= idC. In other words, F
is invertible up to 2-isomorphism.

For our (and many other) purposes, the notion of 2-category is too restrictive. (The 2-categories we
describe are often called strict 2-categories.) What we need instead are weak 2-categories, also known as
bicategories. Intuitively we may think of a bicategory as a category where every axiom holds merely up to
2-isomorphism. In particular, a bicategory is a 2-category where composition is not strictly associative,
nor unital. Therefore, in a bicategory, whenever we have three composable arrows f : x→ y, g : y → z
and h : z → w, say, we can only hope to have 2-isomorphisms

(f ◦ g) ◦ h =⇒ f ◦ (g ◦ h), f ◦ idx =⇒ f, and idy ◦f =⇒ f,

instead of full-fledged equalities. These canonical 2-isomorphisms are subject to various coherence
axioms. We omit them here. For the precise definition of a bicategory and more details, we refer to
[Mac98]. Also see [Lac07] for a modern overview. It should be noted that a strict 2-category is a
special case of a bicategory, where the three 2-isomorphisms in the previous equation are always just
the identity maps.

In a bicategory there are three degrees of sameness for objects. The strictest form is simply equality:
x = y. Then there is the familiar notion of isomorphism: x ∼= y, which means there are two arrows
f : x → y and f−1 : y → x satisfying f ◦ f−1 = idy and f−1 ◦ f = idx. The map f is then known as a
strict 1-isomorphism, or just as an isomorphism. These two concepts make sense in any category, but
in a bicategory we have an additional notion:

Definition 1.1. Let C be a bicategory, and consider two objects x, y ∈ ob(C). We say x and y
are equivalent (or weakly isomorphic) if there exists an arrow f : x → y that is invertible up to 2-
isomorphism. In other words, if there are arrows f : x → y and g : y → x satisfying f ◦ g ∼= idy and
g ◦ f ∼= idx.

Note that this generalises the notion of equivalence between categories to the objects of an arbitrary
bicategory. We leave it to the reader to fill in the gaps on why this forms a genuine equivalence relation
on the set of objects. To distinguish equivalences that occur inside of a bicategory from other notions
of equivalence (such as from an equivalence relation), we might call them bicategorical equivalences.
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2 C∗-algebras and C∗-correspondences
Our first point of order will be to give a precise construction of the bicategory C∗Corr of C∗-correspond-
ences between C∗-algebras (Theorem 2.14). For that, we will provide a brief recollection of the definition
of a Hilbert C∗-module in Section 2.1. In light of Definition 1.1 there follows a notion of equivalence
between C∗-algebras that is inherent to C∗Corr. In order to justify the claim that bicategories form
the correct setting for Morita theory in the C∗-algebra setting, we will prove (Theorem 2.27) that the
equivalences in C∗Corr are exactly the equivalence bibundles (Definition 2.16) inducing Morita equi-
valences. In this sense we will have justified that these two natural definitions of (Morita) equivalence
are, in fact, equivalent.

Recall that a C∗-algebra A is a Banach ∗-algebra satisfying the C∗-identity : for all a ∈ A we have
‖a∗a‖ = ‖a‖2. We do not assume that our C∗-algebras are unital. Morphisms between C∗-algebras are ∗-
homomorphisms, which are automatically continuous (even norm decreasing). Such a ∗-homomorphism
φ : A → B is called nondegenerate if φ(A)B is dense in B. We denote the category of C∗-algebras
and nondegenerate ∗-homomorphisms between them by C∗Alg. A good reference for general operator
theory is [Bla06]. For C∗-correspondences our main reference is [RW98], from which almost all our
results can be derived. Also see the papers [Lan01a; Lan01b], or the more recent [BMZ13].

2.1 Hilbert C∗-modules
The first appearance of Hilbert C∗-modules was in the work of Kaplansky [Kap53], where he considered
modules over function algebras of compact spaces. Twenty years later the general case for C∗-algebras
appeared in the work of Paschke [Pas73] and Rieffel [Rie74a]. Hilbert C∗-modules form a generalisation
of Hilbert spaces and complex-valued inner products. It turns out that the structure of a C∗-algebra
allows us to re-state the definition of an inner product almost verbatim. This is due in part to the
behaviour of positive elements in a C∗-algebra. Recall that an element a ∈ A of a C∗-algebra is called
positive if it is of the form a = b∗b for some b ∈ A. If A is unital, then a is positive if and only if its
spectrum σ(a) is contained in the non-negative reals.

If B is a complex associative algebra, recall that a vector space E is called a right B-module if it is
equipped with a bilinear right action E×B → E. To emphasise this, we denote such a module by EB .

Definition 2.1. Let B be a C∗-algebra, and let EB be a right B-module. A sesquilinear map (with
the convention that it is linear in the second component) 〈·, ·〉B : E× E→ B is called a B-valued inner
product on E if it satisfies the following four conditions:

1. The second component is B-linear in the sense that for all ξ, η ∈ E and b ∈ B we have 〈ξ, η · b〉B =
〈ξ, η〉Bb, where on the right hand side the multiplication is that of B;

2. We have 〈ξ, η〉∗B = 〈η, ξ〉B for any ξ, η ∈ E;

3. For all ξ ∈ E, the element 〈ξ, ξ〉B is positive in B;

4. There is a nondegeneracy condition: 〈ξ, ξ〉B = 0 if and only if ξ = 0.

We say that the right B-module EB equipped with a B-valued inner product 〈·, ·〉B is a right inner

product B-module. The inner product defines a norm ‖·‖E on E by the formula ‖ξ‖E := ‖〈ξ, ξ〉B‖1/2B . If
E is complete with respect to this norm, we say it is a right Hilbert C∗-module (over B).

The notion of a left Hilbert C∗-module (over A) is defined completely analogously, in which case we
denote the inner product by a prescript: A〈·, ·〉.

Given two Hilbert C∗-modules EB and FB (both over B), whose B-valued inner products we denote
by 〈·, ·〉EB and 〈·, ·〉FB , a function T : E→ F is called adjointable if there exists another function T ∗ : F→ E
such that for all ξ ∈ E and ζ ∈ F we have the equality

〈T (ξ), ζ〉FB = 〈ξ, T ∗(ζ)〉EB .
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From this defining relation it follows that any adjointable function is necessarily a bounded linear map,
and has to respect the B-module structure in the sense that T (ξb) = T (ξ)b for all ξ ∈ E and b ∈ B.
For this reason, we shall refer to adjointable functions as adjointable operators. We denote the space of
adjointable operators from E to F by LB(E,F). This space forms the analogue of bounded operators on
a Hilbert space:

Proposition 2.2 ([RW98, Proposition 2.21]). Let EB be a Hilbert C∗-module. The space LB(E) of
adjointable operators on E is a C∗-algebra with respect to the operator norm.

Example 2.3. A Hilbert C∗-module over C is just a Hilbert space H . On a Hilbert space every
operator is adjointable, so we have LC(H ) = B(H ), the C∗-algebra of bounded operators on H .

Besides adjointable operators on Hilbert C∗-modules, we have the important class of compact oper-
ators. For two Hilbert C∗-modules EB and FB we define the finite rank operators as2 (spans of)

θζ,ξ : E −→ F; η 7−→ ζ · 〈ξ, η〉EB ,

where ξ ∈ E and ζ ∈ F. All finite rank operators are adjointable, with θ∗ζ,ξ = θξ,ζ . The compact operators
E→ F are defined as the closed span

KB(E,F) := span{θζ,ξ : ζ ∈ F, ξ ∈ E}.

In analogy to the theory of Hilbert spaces:

Proposition 2.4 ([RW98, Lemma 2.25]). Let EB be a Hilbert C∗-module. The space KB(E) of compact
operators on E is a closed two-sided ideal in the adjointable operators LB(E), and hence a C∗-algebra.

An important construction that will actually be a crucial part of our later proofs is the following.

Example 2.5 ([RW98, Lemma 2.30]). Let EA be a Hilbert C∗-module. Then E has the structure of a
left Hilbert C∗-module over KA(E) with the obvious action and inner product KA(E)〈ξ, ζ〉 := θξ,ζ .

2.2 The bicategory of C∗-algebras and C∗-correspondences
Let us expand on some remarks made in the abstract, in order to motivate why (beyond, e.g., the
representation theory of locally compact Hausdorff groups) the category C∗Alg is unsatisfactory. In
noncommutative geometry, geometric spaces are modelled using C∗-algebras. Already in the case of
finite-dimensional (matrix) algebras and finite discrete spaces we observe the following (see [vSu15,
Chapter 2]). Every finite space X gives rise to a commutative matrix algebra C(X), and every finite-

dimensional matrix algebra A gives rise to a finite space Â. It follows as a special case of Gelfand duality
that when A is commutative we have A ∼= C(Â). But, of course, A may well not be commutative in

general. In that case the assignment A 7→ Â does not reflect isomorphism. That means there are
non-isomorphic matrix algebras A and B, such that nevertheless Â ∼= B̂. This defect in the category
C∗Alg needs to be remedied if, as the theory of noncommutative geometry (very usefully) proposes,
we want to do geometry with C∗-algebras instead of spaces. One way of interpreting this defect is by
saying C∗Alg lacks the morphisms to induce the appropriate isomorphisms. The goal of the subsequent
sections is, then, to describe a generalised notion of ∗-homomorphism, thereby adding morphisms (and
hence isomorphisms) to C∗Alg, which describe more accurately the topological and geometric aspects3

of C∗-algebras (cf. [vSu15, Theorem 2.14]).

2In Dirac notation, one would write θζ,ξ = |ζ〉〈ξ|.
3There is an analogous situation in the theory of Lie groupoids and differentiable stacks, where the motivation to

introduce Morita equivalence is even more apparent. This is beyond the scope of this note, but we refer to [Blo08].
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We will not go into more detail on these questions of ‘geometric properties’ (which are also more
subtle than we portray them here; see Note 8 in [vSu15, Page 23]), but will rather focus on the
technical aspects of Morita equivalence itself. Namely, the generalised morphisms between C∗-algebras
(Definition 2.6) defines a bicategorical equivalence, while on the other hand we have Rieffel’s more
intrinsic definition of Morita equivalence (Definition 2.16). To prove that these notions coincide will be
the content of the remainder of this note.

Definition 2.6. Let A and B be two C∗-algebras. A C∗-correspondence from A to B is a right
Hilbert C∗-module EB together with a nondegenerate ∗-homomorphism φ : A → LB(E). Sometimes
we denote such correspondences by (E, φ) : A→ B, but more often implicitly by AEB . (Nondegeneracy
of φ : A → LB(E) here means that the subspace φ(A)(E) is dense in E. Some authors omit this
requirement.)

Example 2.7. As noted in Example 2.3, a Hilbert C∗-module over C is just a Hilbert space H . On a
Hilbert space the adjointable operators are exactly the bounded operators, so LC(H ) = B(H ). Hence,
a C∗-correspondence from A to C is just a nondegenerate ∗-representation A → B(H ). We will see
below that C∗-algebras are also special cases of Hilbert C∗-modules, and will play an important rôle in
this paper as the identity elements of C∗Corr.

The notation AEB suggests the structure of a bimodule. Indeed, we have a left action of A on E
given by a · ξ := φ(a)(ξ), and this action commutes with the one of B precisely because each φ(a) is a
B-module map. That φ respects the involution moreover gives the identity 〈a · ξ, η〉B = 〈ξ, a∗ · η〉B .

Lemma 2.8 ([Lan01b, Lemma 3.8]). Let (E, φ) : A → B be a C∗-correspondence. Nondegeneracy of
φ implies (and is in fact equivalent to the property) that for every approximate unit (ei)i∈I in A and
ξ ∈ E we have limi∈I eiξ = limi∈I φ(ei)(ξ) = ξ.

An important step in the construction of C∗Corr is the definition of composition of C∗-correspondences.
This is done via the balanced tensor product, originally introduced by Rieffel in [Rie74a]. The construc-
tion is as follows (see [RW98, Proposition 3.16]): consider two C∗-correspondences (E, φ) : A→ B and

(F, ψ) : B → C. The algebraic tensor product E ⊗alg
C F inherits a C-module structure by action on the

right component: (ξ ⊗ ζ)c := ξ ⊗ (ζc), and the following turns it into an inner product C-module:

〈〈ξ1 ⊗ ζ1, ξ2 ⊗ ζ2〉〉C := 〈ζ1, 〈ξ1, ξ2〉Bζ2〉C .

The vector space E ⊗B F is defined as the completion of the quotient of E ⊗alg
C F by span{ξ ⊗ ζ :

〈〈ξ ⊗ ζ, ξ ⊗ ζ〉〉C = 0} with respect to the norm induced by the C-valued inner product 〈〈·, ·〉〉C . As such,
we have identities ξb ⊗ ζ = ξ ⊗ ψ(b)(ζ) =: ξ ⊗ bζ. Note that the C-module structure carries over to
E⊗B F, hence making it a right Hilbert C∗-module over C.

Now, given an adjointable operator T ∈ LB(E), the map

T ⊗ 1 : E⊗B F −→ E⊗B F defined on pure tensors by ξ ⊗ ζ 7−→ (Tξ)⊗ ζ

is an adjointable operator: T⊗1 ∈ LC(E⊗BF). Moreover, the assignment−⊗ 1 : LB(E)→ LC(E⊗B F)
sending T 7→ T ⊗ 1 is a ∗-homomorphism.

Definition 2.9. The composition of the C∗-correspondences (E, φ) and (F, ψ) is defined by taking the
balanced tensor product E ⊗B F as a right Hilbert C∗-module over C together with the nondegenerate
∗-homomorphism φ⊗ 1 : A→ LC(E⊗B F) defined by a 7→ φ(a)⊗ 1. (One could write this composition
cumbersomely as (E⊗B F, (−⊗ 1) ◦ φ)) : A→ C.)

As we alluded to in Example 2.7, any C∗-algebra A can also be seen as a C∗-correspondence on
itself. As a vector space set E = A, with right multiplication as the right A-module structure, and
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〈·, ·〉A : A×A→ A; (a, b) 7→ a∗b as the inner product. The norm that this induces is equal to the norm
of A; hence AA is a Hilbert C∗-module. Further, left multiplication Ma : b 7→ ab is clearly an adjointable
map, and the inclusion A ↪→ LA(A); a 7→Ma is nondegenerate by the existence of approximate units.

Definition 2.10. The resulting C∗-correspondence AAA is called the unit correspondence of A.

The next definition is crucial and necessary in the definition of C∗Corr. Namely, it is clear that the
composition of C∗-correspondences cannot be strictly associative, if only for the simple fact that the
Cartesian product of sets (X × Y ) × Z is in general not equal to X × (Y × Z). They are nevertheless
bijective as sets, which hints at the fact that there may be some notion of equivalence that makes the
composition of C∗-correspondences associative in some weaker sense. This notion is the following:

Definition 2.11. Let (E, φ) and (F, ψ) be two C∗-correspondences from A to B. A unitary intertwiner
u : (E, φ) ⇒ (F, ψ) is a unitary adjointable map u ∈ LB(E,F) (i.e., u∗ = u−1) such that for all a ∈ A
the following diagram commutes (which just amounts to u being A-linear):

E E

F F.

φ(a)

u u

ψ(a)

The unitary intertwiners will be exactly the 2-morphisms in C∗Corr. Note that, almost by defini-
tion, a unitary intertwiner between C∗-correspondences is invertible (i.e., if u is a unitary intertwiner,
then u−1, going the other way around, is one as well). Therefore, whenever there exists a unitary inter-
twiner between C∗-correspondences, we may consider them unitarily isomorphic. In other words, every
2-morphism in C∗Corr is a 2-isomorphism. With this, we can start to investigate the behaviour of
composition of C∗-correspondences up to unitary isomorphism. Whereas it was impossible for this com-
position to be strictly associative, or to allow strict identity morphisms, we will prove these properties do
hold up to unitary isomorphism. Firstly, we can prove that the unit correspondences of Definition 2.10
behave like identity arrows:

Proposition 2.12. Let A and B be C∗-algebras, and consider a C∗-correspondence AEB. Then there
are unitary isomorphisms

AA⊗A EB =⇒AEB , and AE⊗B BB =⇒AEB .

Proof. Suppose that the left A-module structure of E arises from the nondegenerate ∗-homomorphism
φ : A→ LB(E). Then define u : A⊗AE→ E by the extension of left multiplication: a⊗ξ 7→ φ(a)(ξ) = aξ.
This map is well defined because φ is a ∗-homomorphism:

u(ab⊗ ξ) = φ(ab)(ξ) = φ(a)(φ(b)ξ) = u(a⊗ bξ).

For its adjoint, we take an approximate unit (ei)i∈I of A, and set u∗ : E→ A⊗A E as ξ 7→ limi∈I ei ⊗ ξ.
To show that the limit on the right hand side exists, take i, j ∈ I and calculate the norm:

‖ei ⊗ ξ − ej ⊗ ξ‖2A⊗AE = ‖〈〈(ei − ej)⊗ ξ, (ei − ej)⊗ ξ〉〉B‖B
=
∥∥〈ξ, 〈ei − ej , ei − ej〉Aξ〉B∥∥B

= ‖(ei − ej)ξ‖2E 6 ‖ξ‖2E ‖φ‖
2 ‖ei − ej‖2A .

6



It is clear from this approximation that the sequence (ei ⊗ ξ)i∈I is Cauchy in A⊗A E, proving that the
limit limi∈I ei ⊗ ξ exists. A straightforward calculation shows that u∗ is the adjoint of u:

〈u(a⊗ ξ1), ξ2〉B = 〈aξ1, ξ2〉B = 〈ξ1, a∗ξ2〉B
= lim

i∈I
〈ξ1, 〈a, ei〉ξ2〉B = lim

i∈I
〈〈a⊗ ξ1, ei ⊗ ξ2〉〉B

= 〈〈a⊗ ξ1, lim
i∈I

ei ⊗ ξ2〉〉B = 〈〈a⊗ ξ1, u∗(ξ2)〉〉B .

Lemma 2.8 ensures that u∗ is a right-sided inverse of u:

u ◦ u∗(ξ) = u

(
lim
i∈I

ei ⊗ ξ
)

= lim
i∈I

u(ei ⊗ ξ) = lim
i∈I

eiξ = ξ,

and the defining relation of the balanced tensor product gives

u∗ ◦ u(a⊗ ξ) = u∗(aξ) = lim
i∈I

ei ⊗ (aξ) = lim
i∈I

(eia)⊗ ξ = a⊗ ξ,

proving that u defines a unitary intertwiner AA⊗A EB ⇒AEB , as desired.
The construction ofAE⊗B BB ⇒AEB is analogous. Note that here we already enjoy a nondegeneracy

property inherent to all Hilbert C∗-modules, namely that E · B is always dense in E by the Cauchy-
Schwarz inequality.

In a similar vein we have an associativity condition, whose proof is similar.

Proposition 2.13. Consider three C∗-correspondences AEB, BFC and CGD. Then there is a unitary
isomorphism

(E⊗B F)⊗C G =⇒ E⊗B (F⊗C G)

defined on pure tensors by the obvious map (ξ ⊗ ζ)⊗ γ 7→ ξ ⊗ (ζ ⊗ γ).

Summarising what we have so far (see also e.g. [Lan01a; EKQ06; Blo08; BMZ13]):

Theorem 2.14. There is a bicategory C∗Corr consisting of C∗-algebras as objects, C∗-correspondences
as morphisms, and unitary intertwiners as 2-morphisms. The composition of C∗-correspondences is via
the balanced tensor product, and the unit correspondences are the identity arrows.

To show that the framework of C∗-correspondences subsumes the traditional notion of morph-
ism between C∗-algebras, we show that every nondegenerate ∗-homomorphism gives rise to a C∗-
correspondence:

Proposition 2.15 (Correspondisation). We have an inclusion functor ι : C∗Alg ↪→ C∗Corr (on
the level of 1-categories) acting as identity on objects, and sending a nondegenerate ∗-homomorphism
φ : A → B to the C∗-correspondence Aι(φ)B, where ι(φ) = B carries the natural B-module structure,
and A acts adjointably on B by a · b := φ(a)b.

Proof. It is clear that ι(φ)B is a Hilbert C∗-module with respect to the inner product 〈b1, b2〉B = b∗1b2, as
in the unit correspondence. The inclusion of B ↪→ LB(B), sending b ∈ B to its left multiplication oper-
ator Mb, is a well-defined ∗-homomorphism between C∗-algebras. The ∗-homomorphism A→ LB(B) is
then the composition of φ and this inclusion, i.e., a 7→Mφ(a). This is evidently nondegenerate whenever
φ is. Hence Aι(φ)B is a well-defined C∗-correspondence from A to B.

Now suppose that we have two ∗-homomorphisms φ : A → B and ψ : B → C. We construct a
unitary intertwiner

u :Aι(φ)⊗B ι(ψ)C =⇒Aι(ψ ◦ φ)C .

For this, set u : ι(φ) ⊗B ι(ψ) = B ⊗B C → ι(ψ ◦ φ) = C on pure tensors by b ⊗ c 7→ ψ(b)c. This is
well defined on the balanced tensor product since ψ is a ∗-homomorphism. It completes to a unitary
intertwiner by similar arguments as in the proof of Proposition 2.12 using the nondegeneracy of ψ.
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2.3 C∗-correspondences and equivalence bimodules
Now that we have set the stage for C∗-correspondences, we set out to prove our main theorem character-
ising the equivalences in C∗Corr (Theorem 2.27). Let us spell out what it means for C∗-algebras A and
B to be equivalent in C∗Corr. Recall that by Definition 1.1 two objects in a bicategory are said to be
equivalent when there is a weakly invertible arrow between them. In this case, A and B are equivalent
in C∗Corr if and only if there exist C∗-correspondences AEB and BFA with unitary isomorphisms

AE⊗B FA =⇒AAA and BF⊗A EB =⇒BBB .

We would like necessary and sufficient conditions inherent to a C∗-correspondence AEB to determine
whether it admits a weak inverseBFA or not. We will prove in Theorem 2.27 that the following definition
will provide exactly that.

Definition 2.16 ([Rie74b, Definition 7.5]). An equivalence bimodule (also called an imprimitivity
bimodule in [RW98, Definition 3.1]) between A and B is a bimodule AEB such that:

1. AE is a full left Hilbert C∗-module with respect to an A-valued inner product A〈·, ·〉, and EB is a
full right Hilbert C∗-module with respect to a B-valued inner product 〈·, ·〉B . Here fullness means

A〈E,E〉 is dense in A, and similarly for EB ;

2. The bimodule structure is adjointable in that for all ξ, η ∈ E, a ∈ A and b ∈ B we have

A〈ξ · b, η〉 = A〈ξ, η · b
∗〉 and 〈a · ξ, η〉B = 〈ξ, a∗ · η〉B ;

3. Lastly, we have for all ξ, η, ζ ∈ E a compatibility for the A- and B-valued inner products:

A〈ξ, η〉 · ζ = ξ · 〈η, ζ〉B .

Note that the two norms on E, induced by A〈·, ·〉 and 〈·, ·〉B , must agree as a consequence of the
third condition.

Definition 2.17. Two C∗-algebras are called (strongly) Morita equivalent if there exists an equivalence
bimodule between them. (This was the original definition due to Rieffel [Rie74b].) It can be proved
directly that this forms a genuine equivalence relation [RW98, Proposition 3.18].

Note that equivalence bimodules are, in particular, C∗-correspondences. Indeed, that AE is a left
Hilbert C∗-module makes it so that the ∗-homomorphism φ : A → LB(E), sending a ∈ A to the left
module action Ma : ξ 7→ aξ, is nondegenerate.

Example 2.18. Every C∗-algebra is Morita equivalent to itself through its unit correspondence.

We now have two notions of equivalence between C∗-algebras. We have the Morita equivalence of
Definition 2.17, and the bicategorical equivalence in C∗Corr. The goal of Theorem 2.27 is to prove that
these two coincide. To start this proof, we show that the properties in Definition 2.16 provide sufficient
conditions to define a weak inverse of a C∗-correspondence. Given an equivalence bimodule AEB , we
construct a new bimodule BEA as follows (cf. [RW98, p.49]). As a vector space, E is the conjugate of
E, meaning that the addition is the same, but the scalar multiplication is defined by λ · ξ := λξ, where
on the left the multiplication is in E and on the right hand side it is that of E. The bimodule structure
of BEA is then effectively flipping that of AEB :

b · ξ := ξb∗, B〈ξ, η〉 := 〈ξ, η〉B ;

ξ · a := a∗ξ, 〈ξ, η〉A := A〈ξ, η〉,

and it is obvious that it forms an equivalence bimodule. (Here, on the right hand sides, each time the
bimodule operations of the original bimodule are understood.) It is obvious that ifAEB is an equivalence
bimodule, then so is BEA.
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Proposition 2.19. Let AEB be an equivalence bimodule. Then BE⊗A EB is an equivalence bimodule
with inner products

〈〈ξ1 ⊗ ζ1, ξ2 ⊗ ζ2〉〉B := 〈ζ1〈ξ1, ξ2〉A, ζ2〉B ,

B〈〈ξ1 ⊗ ζ1, ξ2 ⊗ ζ2〉〉 := 〈ξ1〈ζ1, ζ2〉A, ξ2〉B .

(A similar result holds for AE⊗B EA.)

Proof. (Note that this is a special case of [RW98, Proposition 3.16], but the proof is significantly simpler
here, and we won’t need the general case.)

Fullness of BE⊗A EB follows from fullness of AEB and nondegeneracy of a 7→Ma ∈ LB(E). Namely,

〈〈E⊗A E,E⊗A E〉〉B =
〈
E〈E,E〉A,E

〉
B

= 〈E,A〈E,E〉E〉B

is dense in 〈E, AE〉B by fullness of AE. And since AE is dense in E, 〈E, AE〉B is in turn dense in 〈E,E〉B ,
which is subsequently dense in B by fullness of EB . Similarly we find that BE⊗A EB is full with
respect to the left inner product. Simple calculations further show that these inner products satisfy the
compatibility conditions of Definition 2.16.

Before we continue, we give useful sufficient conditions for a map between equivalence bimodules to
be a unitary intertwiner.

Lemma 2.20. Let AEB and AFB be two equivalence bimodules from A to B. A linear map u : E→ F is
a unitary intertwiner whenever it preserves the left A- and right B-inner products, and has dense range.

Proof. This is an elementary argument, as in [RW98, Remark 3.27]. Since the norms on E and F are
induced by the inner products, which u preserves, the map is isometric. Hence it must be injective
and must have closed range. Therefore, if the range is dense, u must be surjective. This surjectivity,
together with the equation

〈u(ξ), u(ζb)〉B = 〈ξ, ζb〉B = 〈ξ, ζ〉Bb = 〈u(ξ), u(ζ)〉Bb = 〈u(ξ), u(ζ)b〉B ,

gives that u is B-linear, so u ∈ LB(E,F). A similar argument with the left A-inner product gives that
u is A-linear, and hence the diagram in Definition 2.11 commutes.

Now we can prove that equivalence bimodules are weakly invertible in C∗Corr, their weak inverse
given by their conjugate.

Proposition 2.21. Let AEB be an equivalence bimodule. Then we have unitary intertwiners

AE⊗B EA =⇒AAA; ξ ⊗ η 7−→ A〈ξ, η〉,

BE⊗A EB =⇒BBB ; ξ ⊗ η 7−→ 〈ξ, η〉B .

In particular, BEA is a weak inverse for AEB.

Proof. This is proven in [RW98, Proposition 3.28]. We follow their argument, employing Lemma 2.20.
We claim that the map u : E⊗A E→ B defined on pure tensors by ξ ⊗ η 7→ 〈ξ, η〉B forms a unitary

intertwiner. It is straightforward to see from the properties of the inner product 〈·, ·〉B that u is well-
defined. We show, to satisfy the sufficient conditions of Lemma 2.20, that u preserves the inner-products
and has dense range.
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Consider two pure tensors ξ1 ⊗ ζ1, ξ2 ⊗ ζ2 ∈ E⊗A E. We get:

〈u(ξ1 ⊗ ζ1), u(ξ2 ⊗ ζ2)〉BB = 〈〈ξ1, ζ1〉B , 〈ξ2, ζ2〉B〉B
= 〈ζ1, ξ1〉B〈ξ2, ζ2〉B
= 〈ζ1, ξ1〈ξ2, ζ2〉B〉B
= 〈ζ1, 〈ξ1, ξ2〉Bζ2〉B ,

where in the last step we use that left multiplication in E is the same as right multiplication by the
adjoint in E. But now on the right hand side we recognise the inner product of the balanced tensor
product E⊗A E (Proposition 2.19): first we can write 〈ξ1, ξ2〉Bζ2 = ζ2〈ξ2, ξ1〉B , which gives

〈u(ξ1 ⊗ ζ1), u(ξ2 ⊗ ζ2)〉BB = 〈ζ1, ζ2〈ξ2, ξ1〉B〉B = 〈ζ1〈ξ1, ξ1〉B , ζ2〉B = 〈〈ξ1 ⊗ ζ1, ξ2 ⊗ ζ2〉〉B ,

showing that u preserves the right B-valued inner product. To show that u preserves the left A-valued
inner we can do a similar calculation, which we leave to the reader. Note further that u(E⊗AE) = 〈E,E〉B ,
and since EB is full, it follows that u has dense range. Thus by Lemma 2.20 it follows that u is a
unitary intertwiner. That AE⊗B EA ⇒ AAA is a unitary intertwiner then follows after the observation

that E = E.

Therefore, any equivalence bimodule, seen as a C∗-correspondence, is an equivalence in C∗Corr.
However, the construction ofBEA depends explicitly on the left A-valued inner product, and so cannot be
performed for arbitrary C∗-correspondences. The next two lemmas tell us for which C∗-correspondences
we can perform this inversion.

Lemma 2.22. Let EB be a full Hilbert C∗-module. Then KB(E)EB is an equivalence bimodule between the
compact operators on E and B, with the left inner product sending a pair of vectors to their corresponding
finite rank operator: KB(E)〈ξ, ζ〉 := θξ,ζ .

Conversely, if AEB is an equivalence bimodule, then there exists a ∗-isomorphism φ : A → KB(E)
such that φ(A〈ξ, ζ〉) = KB(E)〈ξ, ζ〉.

Proof. We follow the proof of [RW98, Proposition 3.8]. Let EB be a full Hilbert C∗-module over B. By
Example 2.5 we get a left Hilbert C∗-module structure over the compact operators KB(E). Moreover,
it is immediate from definition of compact operators that it is full. That the second and third condition
of Definition 2.16 are satisfied by KB(E)EB follows directly from the definitions.

Now suppose that AEB is an equivalence bimodule. Denote by φ : A → LB(E) the nondegenerate
∗-homomorphism mapping a 7→Ma. Then from the compatibility of the inner products it follows that

φ (A〈ξ, ζ〉) (η) = A〈ξ, ζ〉η = ξ〈ζ, η〉B = θξ,ζ(η),

where θξ,ζ is the finite-rank compact operator as defined in Section 2.1. Hence we find φ (A〈ξ, ζ〉) =

KB(E)〈ξ, ζ〉. By [Bla06, Corollary II.5.1.2] we know the image of φ is closed in LB(E). Together with

the previous equation and the fact that AE is full, we get that im(φ) = KB(E). That leaves us to show
φ is injective. But that a = 0 whenever Ma = 0 follows immediately from the existence of approximate
units.

Lemma 2.23 ([Lan01b, Definition 3.6]). Let AEB be a C∗-correspondence, defined by a nondegenerate
∗-homomorphism φ : A→ LB(E). Then AEB is an equivalence bimodule if and only if the following two
conditions are satisfied.

1. The right Hilbert C∗-module EB is full, i.e., 〈E,E〉B is dense in B;

2. The nondegenerate ∗-homomorphism φ : A→ LB(E) induces an isomorphism A ∼= KB(E).
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Here the A-valued inner product is given by the finite rank operators: A〈ξ, η〉 := φ−1(θξ,η).

Proof. This follows directly from Lemma 2.22.

As a last step to characterise equivalences in C∗Corr, we need to prove that all of them are equi-
valence bimodules, the converse implication being Proposition 2.21. For that we follow the proof of
[EKQ06, Lemma 2.4]. Before we begin we need some more lemmas:

Lemma 2.24. Let AEB be a C∗-correspondence with nondegenerate ∗-homomorphism φ : A→ LB(E).
We have φ(a) = φ(b) if and only if for all ξ, η ∈ E we have 〈aξ, η〉B = 〈bξ, η〉B.

Proof. Suppose a, b ∈ A satisfy the condition that for all ξ, η ∈ E we have 〈aξ, η〉B = 〈bξ, η〉B (the
other implication is trivial). By linearity we have 〈(a − b)ξ, η〉B = 0. Setting η = (a − b)ξ we get that
‖(a− b)ξ‖E = 0 for all ξ ∈ E, from which it follows that φ(a− b) = 0.

Lemma 2.25. Let EB be a Hilbert C∗-module. For each ξ ∈ E we denote Lξ : B → E; b 7→ ξb and
Dξ : E→ B; η 7→ 〈ξ, η〉B. Then L : E→ KB(B,E) mapping ξ 7→ Lξ is an isometric linear isomorphism,
and for each ξ ∈ E we have L∗ξ = Dξ.

The proof is elementary, and we refer to [RW98, Lemma 2.32]. In particular, for ξ, η ∈ E we have
Lξ ◦Dη = θξ,η. It follows that KB(B,E) KB(B,E)∗, by which we mean the linear span of all elements
of the form T ◦ S∗ where T, S ∈ KB(B,E), is dense in KB(E). In light of the previous Lemma 2.25 we
will write this symbolically as EE∗ = KB(E).

Proposition 2.26. Every equivalence in C∗Corr is an equivalence bimodule.

Proof. (Again, note that we are following [EKQ06].) LetAEB be an equivalence, i.e., a C∗-correspondence
admitting a weak inverse BFA, realised, say, by unitary isomorphisms

uA :AE⊗B FA =⇒AAA and uB :BF⊗A EB =⇒BBB .

We show that AEB satisfies both conditions of Lemma 2.23. It is immediate from the definition of
the B-valued inner product on F ⊗A E that its image is contained in the B-valued inner product of E:
〈〈F⊗A E,F⊗A E〉〉B ⊆ 〈E,E〉B . But since uB is unitary, we have

〈〈F⊗A E,F⊗A E〉〉B = 〈uB(F⊗A E), uB(F⊗A E)〉B = 〈B,B〉B ,

which is obviously dense in B by the existence of approximate units. It follows that EB is full.
The more difficult part is proving that φ : A→ LB(E) is an isomorphism from A into the compact

operators on E. First note that a straightforward approximate unit argument shows that the inclusion
A ↪→ LA(A); a 7→ Ma is injective. The intertwiner uA induces a ∗-isomorphism LA(A) ∼= LA(E⊗B F)
sending Ma to u∗A ◦Ma ◦ uA = φ(a)⊗ 1. This proves that the nondegenerate ∗-homomorphism φ⊗ 1 :
A → LA(E ⊗B F) (cf. Definition 2.9) is injective, too. Now, if a ∈ ker(φ) it follows directly that
φ(a)⊗ 1 = 0, since (φ(a)⊗ 1)(ξ ⊗ ζ) = φ(a)(ξ)⊗ ζ = 0⊗ ζ = 0 for all pure tensors ξ ⊗ ζ ∈ E⊗B F. So
the injectivity of φ⊗ 1 carries over to φ.

This leaves us to prove that φ maps surjectively onto KB(E). Define

u : F −→ LB(E, B); u(ζ)(ξ) := uB(ζ ⊗ ξ),

where uB : F ⊗A E → B is our unitary intertwiner. This makes u a well defined linear map. We will
describe both the image φ(A) and KB(E) in terms of u. First, we claim u(ζ1)∗ ◦ u(ζ2) = φ(〈ζ1, ζ2〉FB) for
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all ζ1, ζ2 ∈ F. To this end, calculate:

〈u(ζ1)∗ ◦ u(ζ2)(ξ), η)〉EB = 〈u(ζ2)(ξ), u(ζ1)(η)〉BB
= 〈uB(ζ2 ⊗ ξ), uB(ζ1 ⊗ η)〉BB
= 〈〈ζ2 ⊗ ξ, ζ1 ⊗ η〉〉F⊗AE

B

=: 〈ξ, 〈ζ2, ζ1〉FAη〉EB
= 〈〈ζ1, ζ2〉FAξ, η〉EB = 〈φ(〈ζ1, ζ2〉FA)(ξ), η〉EB ,

so the claim follows by Lemma 2.24. In particular, this gives u(F)∗u(F) = φ(〈F,F〉FA), and since FA is
full (this follows by the exact same argument as above to show that EB is full) and φ is continuous, we
get

u(F)∗u(F) = φ(〈F,F〉FA) = φ
(
〈F,F〉FA

)
= φ(A). (1)

The fact that uB is an intertwiner gives for each b ∈ B a commutative diagram

F⊗A E F⊗A E

B B,

ψ(b)⊗1

uB uB

Mb

where ψ : B → LA(F) is the nondegenerate ∗-homomorphism belonging to BFA. This commutative
diagram allows us to establish

u(bζ)(ξ) = uB(bζ ⊗ ξ)
= uB ◦ (ψ(b)⊗ 1)(ζ ⊗ ξ)
= Mb ◦ uB(ζ ⊗ ξ) = bu(ζ)(ξ),

where b ∈ B, ξ ∈ E and ζ ∈ F. In other words, u is B-linear. Using this equation, we further calculate
that for any given c ∈ B:

〈u(ζ)∗ ◦Mb(c), ξ〉EB = 〈u(ζ)∗(bc), ξ〉EB
= 〈bc, u(ζ)(ξ)〉BB
= 〈c, b∗u(ζ)(ξ)〉BB
= 〈cu(b∗ζ)(ξ)〉BB
= 〈u(b∗ζ)∗(a), ξ〉EB .

It follows by a second employment of Lemma 2.24 that u(ζ)∗ ◦Mb = u(b∗ζ)∗ as adjointable operators
B → E. Noticing that B∗ = B and that multiplication operators Mb lie densely in KB(B), we get

u(F)∗KB(B) = u
(
ψ(B)F

)∗
= u(F)∗

since ψ is nondegenerate. And since φ is nondegenerate we then get using (1) that

E = φ(A)E = u(F)∗u(F)E = u(F)∗uB(F⊗A E) = u(F)∗KB(B) = u(F)∗.

Finally, the proof is finished by using the identification EE∗ = KB(E), the equation above and (1), to
obtain

KB(E) = EE∗ = u(F)∗u(F) = φ(A).
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Combination of Proposition 2.21 and Proposition 2.26 yields our ultimate result:

Theorem 2.27. A C∗-correspondence AEB is an equivalence bimodule if and only if it is an equi-
valence in C∗Corr. In other words, there exists a C∗-correspondence BFA together with with unitary
isomorphisms

AE⊗B FA =⇒AAA and BF⊗A EB =⇒BBB

if and only if AEB is an equivalence bimodule.

Thus we have the conclusion of this note:

Corollary 2.28. Two C∗-algebras are Morita equivalent in the sense of Definition 2.17 if and only if
they are equivalent as objects in the bicategory C∗Corr.
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