
Twisted Group C∗-algebras and

Projective Unitary Representations

Nesta van der Schaaf∗

22nd January 2018

Contents

1 Introduction 1

2 Projective unitary representations and group cohomology 2

2.1 The de�nition of projective unitary representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 The twisted group C∗-algebra 3

3.1 Construction of the twisted group algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 The twisted group C∗-algebra for continuous multipliers . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 The twisted version of the Peter-Weyl theorem 12

4.1 Irreducible ω-representations on compact groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Direct sum decomposition of the twisted group C∗-algebra . . . . . . . . . . . . . . . . . . . . . . . . 13

1 Introduction
Ordinary (non-twisted) group C∗-algebras can be used to study the unitary representations of locally compact
Hausdor� groups. In particular, if G is such a group, then its unitary representations are classi�ed by non-degenerate
∗-representations of C∗(G).

In physics, however, we are rather interested in projective unitary representations. For instance, elementary
particles can be thought of as the irreducible projective unitary representations of the pertinent physical symmetry
group (e.g., the Poincaré group). This group is almost always a (connected) Lie group. In that case, technical
results like Lie's Third Theorem (also called the Cartan-Lie Theorem: every �nite dimensional Lie algebra arises
from a connected, simply connected Lie group) allow us to classify the projective unitary representations in terms
of certain unitary representations of the centrally extended universal covering group.

For arbitrary locally compact Hausdor� groups, this machinery no longer works, and we have to resort to other
techniques. In this essay we review the theory of twisted group C∗-algebras. These generalise the ordinary group
C∗-algebras, and will turn out to help classify the projective unitary representations of a second countable locally
compact Hausdor� group. This classi�cation will be the subject of Section 3.

In [Lan98, Sections III.1.7-8], the theory of twisted group C∗-algebras for globally smooth multipliers of unim-
odular Lie groups is developed. An older reference is [EL69], where twisted Banach ∗-algebras are constructed (see
Section 3.1). To some extent we follow these references. (See also [RA15, Chapter 23].)

In the �nal section we outline some results that are involved in a twisted version of the Peter-Weyl theorem:
for compact topological groups the twisted group C∗-algebra can be decomposed as a direct sum over of matrix
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algebras, taken over all (classes of) irreducible projective representations of the group. See [Wil07, Proposition 3.4]
for the ordinary version of this theorem, and [Lan98, Theorem III.1.8.1] for the smooth version of the twisted result.

Throughout the entire text we make great use of the lecture notes [AC18].

Acknowledgements. Many thanks to Francesca Arici and Tyrone Crisp for teaching me about C∗-algebras and
representation theory, and for suggesting this topic to me. My thanks also go out to Klaas Landsman.

2 Projective unitary representations and group cohomology

Projective unitary representations arise from quantum theory1. The pure states of a physical system may be
represented by the vectors in some Hilbert space H . If ψ ∈ H represents some physical state, it is well-known
that any non-zero scalar multiple λψ represents the same state. It is therefore that the state space of the physical
system is rather the projective Hilbert space P(H ). Whereas unitary operators represent the symmetries of a
Hilbert space, the so-called projective automorphisms, preserving the transition probability, represent those of the
projective Hilbert space. It was proved by Wigner in [Wig31] that

Theorem 2.1 (Wigner). Every projective automorphism T on P(H ) arises from either a unitary or an anti-unitary
operator U on H , and U is determined uniquely by T up to a complex phase. (Cf. [Sch08, Theorem 3.3].)

In this way, the unitary and anti-unitary operators on the Hilbert space H completely determine the auto-
morphisms of the projective Hilbert space P(H ). The ones that arise form the unitary transformations form the
so called projective unitary group, and it can be realised in the following way. Let U(1) denote the circle group,
containing all complex numbers of unit modulus. This group lives inside of the unitary group U(H ) via the follow-
ing injection: diag : U(1)→ U(H ); z 7→ z idH . The projective unitary group of H is then de�ned as the quotient
PU(H ) := U(H )/diag(U(1)). In other words, the projective unitary group contains equivalence classes of unitary
operators that di�er by complex phase.

2.1 The de�nition of projective unitary representations

Given a Hilbert space H , we endow its unitary group U(H ) with the strong operator topology, making it onto
a topological group. The projective unitary group PU(H ) ∼= U(H )/U(1) inherits a topological group structure
from U(H ) (see [Sch08, Proposition 3.11] and surrounding text).

De�nition 2.2. A unitary representation of a topological group G is a continuous group homomorphism
G → U(H ), where H is some Hilbert space. A projective unitary representation of G is a continuous
homomorphism G→ PU(H ).

A projective unitary representation can be thought of as a function π : G → U(H ), together with another
function ω : G × G → U(1) ∼= diag(U(1)), such that for all x, y ∈ G we have the following twisted multiplicativity
law:

π(x)π(y) = ω(x, y)π(xy).

The function ω, due to the associativity of the group law, has to satisfy the following cocycle conditions:

ω(x, y)ω(xy, z) = ω(x, yz)ω(y, z) and ω(1G, 1G) = 1.

Indeed, the function ω is a 2-cocycle on G with values in U(1). The projective representation π determines the
cohomology class [ω] in the second group cohomology of G with values in U(1) uniquely. We refer to [Men17] for
more details on these aspects.

For us, the working de�nition of projective representations will be the following:

1Besides physical motivation, there is also some mathematical incentive to study projective representations: the `Mackey obstruction'.
See [Ros94, p.157].
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De�nition 2.3. Let G be a topological group. A continuous map ω : G × G → U(1) that satis�es the cocycle
conditions is called a multiplier .

For a �xed multiplier ω, an ω-twisted unitary representation (or ω-representation for short) of G on some
separable Hilbert space H is a continuous map π : G → U(H ) that satis�es π(x)π(y) = ω(x, y)π(xy) for all
x, y ∈ G.

From the de�nitions it immediately follows that, for instance, ω(1G, x) = ω(x, 1G) = 1, and π(1G) = idH .
We say that an ω1-representation π1 : G → U(H1) and and ω2-representation π2 : G → U(H2) are (linearly)

equivalent (or isomorphic) if there exists a bounded linear map t : H1 → H2 (often called an intertwiner) such
that for all x ∈ G we have t ◦ π1(x) = π2(x) ◦ t. It follows, in fact, that the two multipliers ω1 and ω2 must in that
case be equal.

The twisted unitary dual Ĝω, with respect to some �xed multiplier ω, is de�ned as the space of all equivalence
classes of irreducible ω-representations of G (on separable Hilbert spaces). Here an ω-representation π : G →
U(H ) is called irreducible when the induced action on the projective Hilbert space P(H ) has no non-trivial
invariant subspaces. (Note that by [Lan98, Proposition III.1.5.1] the irreducible ω-representations of G arise from
the irreducible unitary representations of a certain central extension Gω of G by U(1).)

3 The twisted group C∗-algebra
In this section we construct the twisted version of the group C∗-algebra, where ω : G × G → U(1) is some �xed
measurable multiplier of some second countable locally compact Hausdor� group G. Note that ω is automatically
bounded, since it takes values on the circle.

3.1 Construction of the twisted group algebra

On the space of integrable functions L1(G) (with respect to our left Haar measure µ on G) we de�ne the following
operation:

(f ∗ω g)(x) :=

∫
G

ω(y, y−1x)f(y)g(y−1x) dµ(y),

called the twisted convolution , for any f, g ∈ L1(G) and x ∈ G. Since the multiplier is measurable, it follows that
f ∗ω g ∈ L1(G), by similar arguments used to the un-twisted case (see [AC18, Theorem 1, 12-10-2017] and [Wil07,
Footnote 17, pp.22-23]). In particular we have ‖f ∗ω g‖1 = ‖f ∗ g‖1 6 ‖f‖1 ‖g‖1.

Proposition 3.1. The twisted convolution turns L1(G) into an associative algebra, denoted L1
ω(G).

Proof. Distributivity and compatibility with scalar multiplication are obvious from linearity of the integral. We
therefore only prove associativity. Consider three functions f, g, h ∈ L1(G), and some point x ∈ G in the group.
We have that

[(f ∗ω g) ∗ω h](x) =

∫
G

ω(y, y−1x)(f ∗ω g)(y)h(y−1x) dµ(y)

=

∫
G

∫
G

ω(y, y−1x)ω(z, z−1y)f(z)g(z−1y)h(y−1x) dµ(z) dµ(y).

Using Fubini's Theorem to switch the integration order, we �nd that the above expression is equal to∫
G

f(z)

(∫
G

ω(y, y−1x)ω(z, z−1y)g(z−1y)h(y−1x) dµ(y)

)
dµ(z),

which in turn gives the equality

[(f ∗ω g) ∗ω h](x) =

∫
G

∫
G

ω(zy, (zy)−1x)ω(z, y)f(z)g(y)h((zy)−1x) dµ(y) dµ(z)

3



by using left invariance of the Haar measure on the second integral, with a translation of z−1. On the other hand,
we have

[f ∗ω (g ∗ω h)](x) =

∫
G

ω(z, z−1x)f(z)(g ∗ω h)(z−1x) dµ(z)

=

∫
G

∫
G

ω(z, z−1x)ω(y, (zy)−1x)f(z)g(y)h((zy)−1x) dµ(z) dµ(z).

Comparing the expressions, we see that (up to integration order) the only apparent di�erence between the convo-
lutions is the multiplier term. However, a straightforward calculation with the cocycle condition ensures that these
terms are equal: ω(z, z−1x)ω(y, (zy)−1x) = ω(zy, (zy)−1x)ω(z, y), showing that [f ∗ω (g∗ω h)](x) = [(f ∗ω g)∗ω h](x)
for all x ∈ G, and hence that the twisted convolution is associative.

Proposition 3.2. On L1
ω(G), the following map is an involution:

L1
ω(G)→ L1

ω(G) : f 7→ fω,

fω(x) := ω(x, x−1)∆(x−1)f(x−1).

Proof. First note that, since ∆ : G→ R×>0 is continuous, it is measurable with respect to the Haar measure. Now
fω is the product of measurable functions, so it is also measurable. Moreover,

‖fω‖1 =

∫
G

∣∣∣ω(x, x−1)
∣∣∣ ∣∣∣∆(x−1)f(x−1)

∣∣∣dµ(x) =

∫
G

∣∣∣∆(x−1)f(x−1)
∣∣∣ dµ(x) = ‖f∗‖1 ,

where f∗ is the un-twisted involution. Hence fω ∈ L1(G), showing that the map is well-de�ned.
We now verify that the map has the properties of an involution. Conjugate linearity is obvious from the de�ning

formula. Consider some f ∈ L1
ω(G). Then, for all x ∈ G, we have

(fω)ω(x) = ω(x, x−1)∆(x−1)fω(x−1)

= ω(x, x−1)∆(x−1)
(
ω(x−1, x)∆(x)f(x)

)
= ω(x, x−1)ω(x−1, x)f(x),

where we have used that the modular function ∆ is a real-valued homomorphism. The cocycle condition for
the multiplier gives the equality ω(x, x−1) = ω(x, x−1)ω(1G, x) = ω(x, 1G)ω(x−1, x) = ω(x−1, x). Because the
multiplier maps into the unit circle, we therefore have

(fω)ω(x) =
∣∣ω(x, x−1)

∣∣2 f(x) = f(x),

showing that (fω)ω = f .
Consider another function g ∈ L1

ω(G). We calculate, by using the de�nition:

(f ∗ω g)ω(x) = ∆(x−1)

∫
G

ω(x, x−1)ω(y, y−1x−1)f(y)g(y−1x−1) dµ(y). (1)

On the other hand, we have, also by de�nition:

(gω ∗ω fω)(x) =

∫
G

ω(y, y−1x)gω(y)fω(y−1x) dµ(y)

=

∫
G

ω(y, y−1x)ω(y, y−1)∆(y−1)g(y−1)ω(y−1x, x−1y)∆(x−1y)f(x−1y) dµ(y).

4



Using the commutativity of complex numbers and the fact that ∆ is a homomorphism, we �nd that the terms in-
volving the modular function simplify to ∆(y−1)∆(x−1y) = ∆(x−1y)∆(y−1) = ∆(x−1). Applying a left translation
of x−1 gives

(gω ∗ω fω)(x) = ∆(x−1)

∫
G

ω(xy, y−1)ω(xy, y−1x−1)ω(y−1, y)f(y)g(y−1x−1) dµ(y).

Comparing to the expression for (f ∗ω g)ω in (1), we see that the only apparent di�erence lies in the multiplier
expressions. The cocycle identity gives ω(x, x−1)ω(y, y−1x−1) = ω(xy, y−1x−1)ω(x, y). Substituting this into (1)
shows that it su�ces to prove the following equality: ω(y−1, y)ω(xy, y−1) = ω(x, y). The cocycle condition gives
ω(xy, y−1)ω(x, y) = ω(x, 1G)ω(y, y−1) = ω(y, y−1), which rewrites to ω(xy, y−1) = ω(y, y−1)/ω(x, y). Using the
fact that for elements on the circle the complex conjugate and inverse coincide, we �nd

ω(y−1, y)ω(xy, y−1) =
1

ω(y−1, y)

ω(y, y−1)

ω(x, y)
= ω(x, y), (2)

as desired. The equality (f ∗ω g)ω = (gω ∗ω fω) follows, and we conclude that we have de�ned an involution on
L1
ω(G).

We further conclude:

Proposition 3.3. L1
ω(G) is a Banach ∗-algebra. (See [EL69, Theorem 1].)

3.2 The twisted group C∗-algebra for continuous multipliers

The goal of this section is to complete the twisted convolution algebra L1
ω(G) into a C∗-algebra. The resulting C∗-

algebra is called the twisted group C∗-algebra, and is denoted C∗ω(G). Our starting point for this construction will
be the space of compactly supported complex-valued continuous functions on G, denoted Cc(G). It is well-known
that Cc(G) is a dense linear subspace of L1(G) with respect to the L1-norm. The construction goes hand-in-hand
with the proof of our main result in this section: there is a bijective correspondence between ω-representations
G→ U(H ) and nondegenerate ∗-representations C∗ω(G)→ B(H ).

Firstly, we have the following proposition, whose proof is a straightforward generalisation of the un-twisted
statement:

Proposition 3.4. The space of compactly supported continuous functions Cc(G) is closed under the twisted con-
volution and twisted involution. That is, if f, g ∈ Cc(G), then f ∗ω g ∈ Cc(G) and fω ∈ Cc(G).

We denote by Cω(G) ⊆ L1
ω(G) the involution subalgebra obtained from Cc(G) in this way.

In order to relate the representation theory of G to that of Cω(G) (and later to that of the twisted group
C∗-algebra), we make use of the following result:

Lemma 3.5. Given an ω-representation π : G → U(H ), a function f ∈ Cω(G) and a vector ξ ∈ H , there exists
a unique vector πC(f)ξ ∈H such that for all η ∈H we have

〈η|πC(f)ξ〉 =

∫
G

〈η|f(x)π(x)ξ〉dµ(x).

Proof. The construction of πC(f)ξ is independent on the multiplicative nature of π (i.e., independent on ω). We
therefore refer to [AC18, Lemma 1, 16-10-2017] for a proof where π is an ordinary unitary representation.

This lemma allows us to de�ne a function πC : Cω(G) → B(H ), called the integrated form of π. We claim
that these integrated forms are actually ∗-homomorphisms. Note that ‖πC(f)‖ 6 ‖f‖1, as can be seen from the
fact that π(x) is unitary.

To simplify the proof of this claim, we �rst consider a special case of an ω-representation:
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De�nition 3.6. The twisted left regular representation Lω : G → U(L2(G));x 7→ Lωx of G is de�ned by the
twisted left translation operators:

Lωz f(x) := ω(z, z−1x)f(z−1x).

The twisted right regular representation Rω : G→ U(L2(G));x 7→ Rωx is de�ned by the right twisted translation
operators:

Rωz f(x) := ω(x, z)f(xz).

Proposition 3.7. The twisted left- and right regular representation Lω and Rω are well-de�ned ω-representations
of G.

Proof. (We give the proof only for the left regular representation.) To show that Lω is well-de�ned it su�ces to
show that for each z ∈ G the operator Lωz is unitary (linearity is obvious). In particular, then, it is isometric, and
so ‖Lωz f‖2 = ‖f‖2 <∞, giving immediately that Lωz f ∈ L2(G). A calculation with the cocycle identity gives that

the inverse of Lωz is given by ω(z−1, z)Lωz−1 (this holds generally for ω-representations). Now for f, g ∈ L2(G):

〈Lωz f |g〉2 =

∫
G

Lωz f(x)g(x) dµ(x) =

∫
G

ω(z, z−1x)f(z−1x)g(x) dµ(x) =

∫
G

ω(z, x)f(x)g(zx) dµ(x),

where we use left-invariance of the Haar measure in the last step. The cocycle identity gives ω(z−1, z) = ω(z−1, zx)ω(z, x)
for all x ∈ G, so we substitute it into the above equation to �nd

〈Lωz f |g〉2 =

∫
G

f(x)ω(z−1, z)ω(z−1, zx)g(zx) dµ(x) =

∫
G

f(x)ω(z−1, z)Lωz−1g(x) dµ(x) =
〈
f
∣∣∣ω(z−1, z)Lωz−1

〉
2
,

which implies that (Lωz )∗ = (Lωz )−1, hence Lωz ∈ U(L2(G)).
Now for the algebraic properties of Lω. We need to verify that Lω satis�es the twisted multiplication law: let

x, y, z ∈ G be group elements, and �x a function f ∈ L2(G). Unpacking the de�nitions:

LωzL
ω
y f(x) = ω(z, z−1x)ω(y, y−1z−1x)f(y−1z−1x).

On the other hand:
Lωzyf(x) = ω(zy, y−1z−1x)f(y−1z−1x),

which, combining with the cocycle relation ω(z, z−1x)ω(y, y−1z−1x) = ω(z, y)ω(zy, y−1z−1x) gives

LωzL
ω
y f(x) = ω(z, y)Lωzyf(x),

meaning LωzL
ω
y = ω(z, y)Lωzy.

We verify some useful relations between the left- and right regular representations and the convolution:

Proposition 3.8. Let y ∈ G and f, g ∈ Cω(G). Then, denoting by ω the pointwise complex conjugate multiplier of
ω, we have the following two identities:

f ∗ω (Lωy g) = ∆(y−1)
(
(Rωy )−1f

)
∗ω g = ∆(y−1)ω(y−1, y)(Rωy−1f) ∗ω g,

and

(Lωy f)ω = ∆(y)Rωy (fω).

Proof. Using the cocycle identity and the de�nitions one easily veri�es that

(f ∗ω (Lωy g))(x) =

∫
G

ω(z, y)ω(zy, y−1z−1x)f(z)g(y−1z−1x) dµ(z).

6



Similarly, using the characteristic properties of the left Haar measure and modular function ∆, we �nd

∆(y−1)((Rωy )−1f ∗ω g)(x) = ∆(y−1)

∫
G

ω(z, z−1x)ω(y, y−1)ω(z, y−1)f(zy−1)g(z−1x) dµ(z)

=

∫
G

ω(zy, y−1z−1x)ω(y, y−1)ω(zy, y−1)f(z)g(y−1z−1x) dµ(z).

Invoking (2) for the multipliers in the integrand now gives the �rst equality. The second equality may be derived
similarly and more simply.

We calculate the integrated form of Lω. By its construction via Lemma 3.5, we have that for all f ∈ Cω(G) and
g, h ∈ L2(G) that

〈h|LωC(f)g〉2 =

∫
G

〈
h
∣∣f(y)Lωy g

〉
2

dµ(y) =

∫
G

∫
G

h(z)f(y)ω(y, y−1z)g(y−1z) dµ(z) dµ(y).

Employing Fubini's Theorem to switch the integration order, we get

〈h|LωC(f)g〉2 =

∫
G

h(z)

∫
G

f(y)ω(y, y−1zg(y−1z) dµ(y) dµ(z) =

∫
G

h(z)(f ∗ω g)(z) dµ(z) = 〈h|f ∗ω g〉2 .

Therefore, the integrated form of the twisted left regular representation is simply twisted convolution:

Proposition 3.9. For all f, g ∈ Cω(G) we have LωC(f)g = f ∗ω g.

Stepping back to the original twisted left regular representation Lω, we have the following interaction with
integrated forms of other ω-representations:

Lemma 3.10. Let π : G→ U(H ) be an ω-representation, and let Lω : G→ U(L2(G)) be the corresponding twisted
left regular representation. Then the integrated form of π satis�es

πC(Lωz f) = π(z)πC(f).

Proof. This relation follows directly from the de�nitions and left invariance of the Haar measure: let ξ, η ∈ H ,
z ∈ G and f ∈ Cω(G). Then

〈η|πC(Lωz f)ξ〉 =

∫
G

〈η|Lωz f(x)π(x)ξ〉dµ(x) =

∫
G

〈
η
∣∣ω(z, z−1x)f(z−1x)π(x)ξ

〉
dµ(x)

=

∫
G

〈η|f(x)ω(z, x)π(zx)ξ〉dµ(x) =

∫
G

〈η|f(x)π(z)π(x)ξ〉dµ(x)

= 〈η|π(z)πC(f)ξ〉 .

Using this result, we may �nally prove our claim:

Proposition 3.11. Given an ω-representation π : G → U(H ), its integrated form πC : Cω(G) → B(H ) is a
∗-homomorphism.

Proof. Linearity is clear from the construction of the integrated forms, so we are left to show that they are multi-
plicative and respect the involution.

Take ξ, η ∈H , and let f, g ∈ Cω(G). First, by de�nition of the integrated form, we have

〈η|πC(f ∗ω g)ξ〉 =

∫
G

〈η|(f ∗ω g)(x)π(x)ξ〉dµ(x) =

∫
G

∫
G

〈
η
∣∣ω(y, y−1x)f(y)g(y−1x)π(x)ξ

〉
dµ(y) dµ(x).
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In the integrand we recognise ω(y, y−1x)g(y−1x) = Lωy g(x), so that by using Fubini's Theorem we obtain an integral∫
G

〈
η
∣∣f(y)Lωy g(x)π(x)ξ

〉
dµ(x) =

〈
η
∣∣f(y)πC(Lωy g)ξ

〉
,

to which we can apply the result of Lemma 3.10. Having done this, and substituting back into the original integral,
we �nd

〈η|πC(f ∗ω g)ξ〉 =

∫
G

〈η|f(y)π(y)πC(g)ξ〉dµ(y) = 〈η|πC(f)πC(g)ξ〉 .

Thus: πC(f ∗ω g) = πC(f)πC(g).
For the involution we further calculate

〈η|πC(fω)ξ〉 =

∫
G

〈
η
∣∣∣ω(x, x−1)∆(x−1)f(x−1)π(x)ξ

〉
dµ(x) =

∫
G

〈
η
∣∣∣ω(x−1, x)f(x)π(x−1)ξ

〉
dµ(x),

using the characteristic properties of the modular function. Writing π(x−1) = ω(x−1, x)π(x)−1 we �nd

〈η|πC(fω)ξ〉 =

∫
G

〈
η
∣∣∣∣∣ω(x−1, x)

∣∣2 f(x)π(x)∗ξ
〉

dµ(x) =

∫
G

〈
η
∣∣∣f(x)π(x)∗ξ

〉
dµ(x) = 〈η|πC(f)∗ξ〉 ,

so that indeed πC(fω) = πC(f)∗, as desired.

Recall that a ∗-representation ρ : A → B(H ) of some C∗-algebra A is called nondegenerate whenever the
space ρ(A)H = span{ρ(a)ξ : a ∈ A, ξ ∈H } is dense in H . If (eι)ι∈I is an approximate unit in A, nondegeneracy
is equivalent to the equation ξ = limι∈I ρ(eι)ξ holding for all ξ ∈H . (See [AC18, De�nition 3, 25-09-2017].)

All integrated forms are in fact nondegenerate:

Lemma 3.12. Let π : G→ U(H ) be an ω-representation of G. Then its integrated form πC : Cω(G)→ B(H ) is
nondegenerate (Cf. [AC18, Lemma 3, 16-10-2017].)

Proof. It su�ces to show that for every Dirac net (fi)i∈I in Cω(G) we have that (πC(fi))i∈I strongly converges to
the identity operator on H , i.e., so that for all ξ ∈H we have the following convergence: ξ = limi∈I πC(fi)ξ.

For arbitrary ξ, η ∈H , with η 6= 0, we have by the Cauchy-Schwarz inequality

|〈η|πC(fi)ξ − ξ〉| 6
∫
G

|〈η|fi(x)π(x)ξ − ξ〉|dµ(x) 6
∫
G

‖η‖ ‖fi(x)π(x)ξ − ξ‖dµ(x).

Noting that
∫
G
‖fi(x)ξ − ξ‖ dµ(x) = 0 by the fact that fi is normalised on G, the triangle inequality moreover gives

|〈η|πC(fi)ξ − ξ〉| 6
∫
G

‖η‖ fi(x) ‖π(x)ξ − ξ‖dµ(x) +

∫
G

‖η‖ ‖fi(x)ξ − ξ‖dµ(x) =

∫
G

‖η‖ fi(x) ‖π(x)ξ − ξ‖ dµ(x).

For every ε > 0 there now exists an open neighbourhood U ⊆ G of the identity element, such that for all x ∈ U
we have ‖π(x)ξ − ξ‖ < ε/ ‖η‖. In turn, there exists an index i0 ∈ I such that for all i > i0 the support of fi is
contained in U . Therefore, for all such i > i0 we obtain

|〈η|πC(fi)ξ − ξ〉| =
∫
U

‖η‖ fi(x) ‖π(x)ξ − ξ‖ dµ(x) <

∫
U

‖η‖ fi(x)ε/ ‖η‖ dµ(x) =

∫
G

εfi(x) dµ(x) = ε.

The result follows.
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De�nition 3.13. For every continuous unitary representation π : G → U(H ) we de�ne the seminorm ‖f‖π :=
‖πC(f)‖B(H ) on the space Cω(G). The (twisted) maximal C∗-norm on Cω(G) is de�ned as

‖f‖ := sup
π∈Ĝω

‖f‖π = sup
π∈Ĝω

‖πC(f)‖B(H ) .

The completion of Cω(G) with respect to the maximal C∗-norm is called the twisted group C∗-algebra , denoted
C∗ω(G). Note that the norm inherits the C∗-identity from that of B(H ), and from the fact that πC is a ∗-
representation of Cω(G).

Lemma 3.14. Let ω be a continuous multiplier on G. For �xed x ∈ G, the left twisted translation map Lωx :
Cω(G) → Cω(G) extends to an isometric linear map on C∗ω(G). For �xed f ∈ C∗ω(G) the map Lωf : G →
C∗ω(G); y 7→ Lωy f is continuous.

Proof. We note that for f ∈ Cω(G) and x ∈ G, the maximal norm of the function Lωxf can be computed as follows:

‖Lωxf‖ = sup
π∈Ĝω

‖πC(Lωxf)‖ = sup
π∈Ĝω

‖π(x)πC(f)‖ ,

using Lemma 3.10. But each π(x) is a unitary representation on some Hilbert space, so ‖π(x)πC(f)‖ = ‖πC(f)‖,
which gives

‖Lωxf‖ = sup
π∈Ĝω

‖πC(f)‖ = ‖f‖ .

This shows that Lωx is an isometric map on Cω(G), and hence can be extended continuously to an isometric map
to the entire space C∗ω(G).

Following the proof of Lemma 9 in [AC18, 16-10-2017], we de�ne

C := {f ∈ C∗ω(G) : Lωf is continuous}.

We claim that this set is closed in C∗ω(G). Let (fn)n∈N be some convergent sequence in C with limit f ∈ C∗ω(G).
We need to show that f ∈ C. For this, take a sequence (xn)n∈N in G, converging to x ∈ G. Repeatedly using the
triangle inequality and isometry of Lωx gives an estimate∥∥Lωxmf − Lωxf∥∥ 6 2 ‖fn − f‖+

∥∥Lωxmfn − Lωxfn∥∥ ,
for all m,n ∈ N, from which it is clear that (Lωxm)m∈N will converge to Lωxf , hence showing that L

ωf is continuous,
and proving that C is closed.

By construction of the twisted group C∗-algebra it now su�ces to show that C is contains the dense subspace
Cω(G). Fixing f ∈ Cω(G), we claim that Lωf is continuous with respect to the L1-norm. Take again the converging
sequence (xn)n∈N in G from the previous paragraph. Writing out the de�nitions, we have

∥∥Lωxnf − Lωxf∥∥1 =

∫
G

∣∣Lωxnf(y)− Lωxf(y)
∣∣dµ(y) =

∫
G

∣∣∣∣ω(xn, x
−1
n y)

ω(x, x−1y)
f(x−1n y)− f(x−1y)

∣∣∣∣dµ(y).

The integrand can be estimated as follows:∣∣∣∣ω(xn, x
−1
n y)

ω(x, x−1y)
f(x−1n y)− f(x−1y)

∣∣∣∣ 6 ∣∣f(x−1n y)− f(x−1y)
∣∣+
∣∣f(x−1y)

∣∣ ∣∣∣∣ω(xn, x
−1
n y)

ω(x, x−1y)
− 1

∣∣∣∣ ,
which, by continuity of both the multiplier ω and of f , is seen to vanish when taking the limit over n. It follows
that (Lωxnf)n∈N converges to Lωxf , showing that L

ωf is continuous in the L1-norm. The fact that f ∈ C now follows
from the fact that the maximal C∗-norm is bounded by the L1-norm.
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Lemma 3.15. Let ρ : C∗ω(G) → B(H ) be a nondegenerate ∗-representation. Then for all f, g ∈ Cω(G) and
ξ, η ∈H we have

〈η|ρ(f ∗ω g)ξ〉 =

∫
G

〈η|f(x)ρ(Lωxg)ξ〉dµ(x).

Proof. We follow the proof of [AC18, Lemma 1, 19-10-2017].
Throughout the proof, we �x ε > 0. Since for g ∈ Cω(G) the map Lωg is continuous with respect to the L1-norm,

for every x in the support of f we can �nd an open neighbourhood Ux of x such that for every other y ∈ Ux we have∥∥Lωxg − Lωy g∥∥1 < ε. The family (Ux)x∈supp(f) forms an open cover for the support of f . By compactness we can
�nd �nitely many points x1, . . . , xn ∈ supp(f) such that (Uxi)

n
i=1 still covers supp(f). We now have a �nite cover

(Uxi)
n
i=1 ∪ {G \ supp(f)} of the entire group G. Since G is a locally compact second countable Hausdor� space, we

can �nd a continuous partition of unity (hi)
n
i=0 subordinate to this cover.

We write fi := hif . Noting that (f ∗ω g)(y) =
∫
G
f(x)Lωx (y) dµ(x), we have a real number α that satis�es

α :=

∥∥∥∥∥f ∗ω g −
n∑
i=1

(∫
G

fi(x) dµ(x)

)
Lωxig

∥∥∥∥∥
1

=

∫
G

∣∣∣∣∣
∫
G

f(x)Lωxg(y) dµ(x)−
n∑
i=1

(∫
G

fi(x) dµ(x)

)
Lωxig(y)

∣∣∣∣∣ dµ(y).

By elementary manipulations and the fact that f =
∑n
i=1 fi, we �nd

α =

∫
G

∣∣∣∣∣
∫
G

n∑
i=1

fi(x)
(
Lωxg(y)− Lωxig(y)

)
dµ(x)

∣∣∣∣∣dµ(y) 6
∫
G

n∑
i=1

|fi(x)|
∥∥Lωxg − Lωxig∥∥1 dµ(x).

Now (switching the sum and integral) since fi is supported on Uxi we have per construction of the open cover that∫
G
|fi(x)|

∥∥Lωxg − Lωxig∥∥ < ε
∫
G
|fi(x)|, so that we have the following inequality for α:

α < ε

∫
G

n∑
i=1

|fi(x)|dµ(x) = ε

∫
G

n∑
i=1

|hi(x)| |f(x)|dµ(x) = ε

∫
G

|f(x)|dµ(x) = ε ‖f‖1 . (3)

Using the triangle inequality, we approximate∣∣∣∣〈η|ρ(f ∗ω g)ξ〉 −
∫
G

〈η|f(x)ρ(Lωxg)ξ〉dµ(x)

∣∣∣∣
6

∣∣∣∣∣〈η|ρ(f ∗ω g)ξ〉 −
∫
G

n∑
i=1

〈
η
∣∣fi(x)ρ(Lωxig)ξ

〉
dµ(x)

∣∣∣∣∣
+

∣∣∣∣∣
∫
G

n∑
i=1

〈
η
∣∣fi(x)ρ(Lωxig)ξ

〉
dµ(x)−

∫
G

〈η|f(x)ρ(Lωxg)ξ〉dµ(x)

∣∣∣∣∣ .
(4)

Using (3) we will estimate each of the two terms on the right hand side individually.
For the �rst term, we �rst note that, since ρ is a ∗-homomorphism between C∗-algebras, it is norm decreasing.

In turn we have for all h ∈ Cω(G) that ‖ρ(h)‖B(H ) 6 ‖h‖ 6 ‖h‖1. Using linearity of ρ we write the �rst term in
the above equation as

〈η|ρ(f ∗ω g)ξ〉 −
∫
G

n∑
i=1

〈
η
∣∣fi(x)ρ(Lωxig)ξ

〉
dµ(x) =

〈
η

∣∣∣∣∣ρ
(
f ∗ω g −

n∑
i=1

(∫
G

fi(x) dµ(x)

)
Lωxig

)
ξ

〉
,
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so now the Cauchy-Schwartz inequality together with ‖ρ(h)‖ 6 ‖h‖1 and (3) give the following upper bound for
the �rst term:

‖η‖ ‖ξ‖

∥∥∥∥∥f ∗ω g −
n∑
i=1

(∫
G

fi(x) dµ(x)

)
Lωxig

∥∥∥∥∥
1

= ‖η‖ ‖ξ‖α < ε ‖η‖ ‖ξ‖ ‖f‖1 .

We calculate an estimate for the second term similarly (using the same inequalities): it has an upper bound

‖η‖ ‖ξ‖
∫
G

∥∥∥∥∥
n∑
i=1

fi(x)ρ(Lωxig)− f(x)ρ(Lωxg)

∥∥∥∥∥dµ(x) 6 ‖η‖ ‖ξ‖
∫
G

n∑
i=1

|fi(x)|
∥∥ρ(Lωxig − L

ω
xg)
∥∥dµ(x)

< ε ‖η‖ ‖ξ‖
∫
G

|f(x)|dµ(x) = ε ‖η‖ ‖ξ‖ ‖f‖1 .

Substituting back into (4), we �nd that for all ε > 0:∣∣∣∣〈η|ρ(f ∗ω g)ξ〉 −
∫
G

〈η|f(x)ρ(Lωxg)ξ〉dµ(x)

∣∣∣∣ < 2ε ‖η‖ ‖ξ‖ ‖f‖1 ,

and the equality follows.

We now describe the inverse procedure of integrating an ω-representation to the twisted group C∗-algebra:

Lemma 3.16. Let ρ : C∗ω(G) → B(H ) be a nondegenerate ∗-representation. For x ∈ G �xed, we de�ne on
ρ(C∗ω(G))H = span{ρ(f)ξ : f ∈ C∗ω(G), ξ ∈H } the following map:

ρ̃G(x) : ρ(C∗ω(G))H →H
n∑
i=1

ρ(fi)ξi 7→
n∑
i=1

ρ(Lωxfi)ξi.

This de�nes an ω-representation ρG : G→ U(H ), such that its integrated form satis�es (ρG)C = ρ.

Proof. First we must show that ρ̃G(x) is well-de�ned on the span ρ(C∗ω(G))H . Let f1, . . . , fn, g1, . . . , gm ∈ C∗ω(G)
and ξ1, . . . , ξn, η1, . . . , ηm ∈ H such that

∑n
l=1 ρ(fl)ξl =

∑m
k=1 ρ(gk)ηk. Let (hι)ι∈I be an approximate unit in

C∗ω(G). Using the �rst identity in Proposition 3.8 we calculate:

Lωxfl = lim
ι∈I

hι(L
ω
xfl) = lim

ι∈I
∆(x−1)((Rωx )−1hι)fl,

for each l ∈ {1, . . . , n}. By continuity of ρ we have therefore ρ(Lωxfl) = limι∈I ∆(x−1)ρ((Rωx )−1hι)ρ(fl), so that
ρ̃G(x) maps

∑n
l=1 ρ(fl)ξl to:

n∑
l=1

ρ(Lωxfl)ξl =

n∑
l=1

lim
ι∈I

∆(x−1)ρ((Rωx )−1hι)ρ(fl)ξl = lim
ι∈I

∆(x−1)ρ((Rωx )−1hι)

n∑
l=1

ρ(fl)ξl

= lim
ι∈I

∆(x−1)ρ((Rωx )−1hι)
m∑
k=1

ρ(gk)ηk =

m∑
k=1

ρ(Lωxgk)ηk,

showing that it is well-de�ned.
Now using that ρ is a ∗-homormorphism, and both identities in Proposition 3.8 (�rstly the second, and then the

�rst), we �nd that for every ξ, η ∈H and f, g ∈ C∗ω(G):

〈ρ(Lωxf)ξ|ρ(Lωxg)η〉 =
〈
ξ
∣∣∆(x)ρ

(
Rωx (fω)

)
ρ(Lωxg)η

〉
=
〈
ξ
∣∣∣∆(x)ρ

(
∆(x−1)

(
Rωx
)−1

Rωx (fω)g
)
η
〉

= 〈ξ|ρ(fω)ρ(g)η〉 = 〈ρ(f)ξ|ρ(g)η〉 .
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By linearity of the inner product and nondegeneracy of ρ it follows that ρ̃G(x) extends to a unitary map ρG(x)
on the entire Hilbert space H . It is straightforward to verify that the induced map ρG : G → U(H ) has the
multiplicativity property of an ω-representation. To show that ρG is continuous we need to show that for every
sequence (xn)n∈N in G converging to some x ∈ G, we have the convergence ρ(Lωxnf)ξ → ρ(Lωxf)ξ in the Hilbert
space. This is evident from the continuity of ρ and the continuity of Lωf (see Lemma 3.14).

Hence we have constructed the continuous ω-representation ρG : G → U(H ), and we are left to show that its
integrated form returns ρ. For this we use Lemma 3.15: on elements ρ(g)ξ of the dense subspace ρ(C∗ω(G))H we
have

〈η|(ρG)C(f)ρ(g)ξ〉 =

∫
G

〈η|f(x)ρG(x)ρ(g)ξ〉dµ(x) =

∫
G

〈η|f(x)ρ(Lωxg)ξ〉dµ(x) = 〈η|ρ(f ∗ω g)ξ〉 = 〈η|ρ(f)ρ(g)ξ〉 .

It follows that (ρG)C(f) equals ρ(f) in the entire Hilbert space H , and hence (ρG)C = ρ.

Lemma 3.17. Let π : G→ U(H ) be an ω-representation. Then (πC)G = π.

Proof. Since πC is nondegenerate (by Lemma 3.12) it su�ces to show that (πC)G(x) = π(x) on the dense subspace
πC(C∗ω(G))H , for all x ∈ G. This follows by Lemma 3.10:

〈η|π(x)πC(f)ξ〉 = 〈η|πC(Lωxf)ξ〉 = 〈η|(πC)G(x)πC(f)ξ〉 .

Combining the previous two lemmas, we have the main result of this section:

Theorem 3.18. Let ω be a continuous multiplier on G. There is a bijective correspondence between continuous
ω-representations of G, and nondegenerate ∗-representations of C∗ω(G).

4 The twisted version of the Peter-Weyl theorem
For compact topological groups there is the well-known result that irreducible unitary representations are necessarily
�nite dimensional, and that any unitary representation can be decomposed as a direct sum of irreducible ones
(see [Fol94, Theorem 5.2]). These facts are summarised in the following theorem:

Theorem 4.1 (Peter-Weyl). Let G be a compact topological group. The (ordinary) left regular representation
L : G → U(L2(G)) on the Hilbert space of square integrable functions is isomorphic to the direct sum of all
irreducible unitary representations:

L ∼=
⊕
[π]∈Ĝ

πdπ .

Here dπ := dim(Hπ) ∈ N and πdπ denotes the dπ-fold direct sum of π. (See [Fol94, Theorem 5.12].)

The Peter-Weyl theorem can be restated (via Theorem 3.18) in the langauge of group C∗-algebras as follows:

Proposition 4.2. Let G be a compact group, and let C∗(G) denote its ordinary group C∗-algebra (corresponding
to the twisted group C∗-algebra with ω = 1). Then

C∗(G) ∼=
⊕
[π]∈Ĝ

Mdπ (C),

where again dπ := dim(Hπ) ∈ N is the dimension of the Hilbert space corresponding to the irreducible representation
π : G→ U(Hπ), and Mdπ (C) denotes the C∗-algebra of complex dπ × dπ matrices. (See [Wil07, Proposition 3.4].)

It turns out that an analogue of this result is also true for twisted C∗-algebras. We refer to [Lan98, Section
III.1.8] for a treatment of the Peter-Weyl theorem in the context of twisted group C∗-algebras of Lie groups with
smooth multiplier.
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4.1 Irreducible ω-representations on compact groups

One part of the Peter-Weyl theorem is the result that irreducible unitary representations of compact groups are
necessarily �nite dimensional. We sketch an argument for the analogous claim for projective representations. In
this, we follow the proofs in the notes [AC18].

First, given an ω-representation π : G→ U(H ), we de�ne the so called matrix coe�cient φη,ξ ∈ C(G) by

φη,ξ(x) :=
〈
π(x)−1η

∣∣ξ〉 = ω(x, x−1)
〈
π(x−1)η

∣∣ξ〉 ,
for each ξ, η ∈ H . A straightforward calculation shows that, due to the compactness of G, the matrix coe�cients
are L2(G) functions:

‖φη,ξ‖22 =

∫
G

∥∥〈π(x)−1η
∣∣ξ〉∥∥2

2
dµ(x) 6 ‖ξ‖2 ‖η‖2

∫
G

dµ(x) <∞.

From now on, we shall normalise the Haar measure µ on G such that
∫
G

dµ(x) = 1.
Now: the following lemma shows that any irreducible ω-representation

Lemma 4.3. Let π : G → U(H ) be an irreducible ω-representation of a compact group G. Then there is an
intertwiner t : H → L2(G) between π and the twisted left regular representation Lω : G→ U(L2(G)). That is, for
all x ∈ G we have t ◦ π(x) = Lωx ◦ t.

Proof. First, �xing a non-zero vector ξ ∈ H , we de�ne an operator t : H → L2(G), by t(η) := φη,ξ. Due to the
normalisation of the Haar measure it follows that t is a bounded linear operator with ‖t‖ 6 ‖ξ‖. A straightforward
calculation with (2) shows that t intertwines π and Lω:

(t ◦ π(y)η)(x) = φπ(y)η,ξ(x) = ω(x, x−1)ω(x−1, y)φη,ξ(y
−1x) = Lωyφη,ξ(x) = (Lωy ◦ t(η))(x).

This equation holds for any two x, y ∈ G, so t ◦ π(y) = Lωy ◦ t for all y ∈ G.

In conjunction with [Lan98, Proposition III.1.5.1], Schur's Lemma shows that t can be rescaled to an isometric
map. It will follow that (cf. [AC18, Corollary 4, 13-11-2017])

Proposition 4.4. If π : G→ U(H ) is an irreducible ω-representation and G is compact, then dim(H ) <∞.

4.2 Direct sum decomposition of the twisted group C∗-algebra

Foremost we note that all compact groups are unimodular, so that the left Haar measure µ on G will also be
right invariant. This fact immediately comes into play to show that the integrated form of the twisted left regular
representation actually takes values in the space of compact operators on L2(G):

Lemma 4.5. For every f ∈ C∗ω(G) the operator LωC(f) ∈ B(L2(G)) is compact. The same is true for the twisted
right regular representation.

Proof. This is the proof of [Wil07, Lemma 3.5]. We saw in Proposition 3.9 that for f, g ∈ Cω(G) the integrated
form acts as LωC(f)g = f ∗ω g. Using the fact that G is unimodular, evaluation at some point x ∈ G returns

LωC(f)g(x) =

∫
G

ω(z, z−1x)f(z)g(z−1x) dµ(z) =

∫
G

ω(xz−1, z)f(xz−1)g(z) dµ(z).

It is clear that the function (x, z) 7→ ω(xz−1, z)f(xz−1) in the integrand is in L2(G×G). Therefore, as an integral
operator, LωC(f) is Hilbert-Schmidt by [Mac08, Theorem 4.16]. But Hilbert-Schmidt operators on separable Hilbert
spaces are compact (Theorem 4.15 of the same reference), so the result follows by denseness of Cω(G) in C∗ω(G).

This lemma, together with the appropriate generalisations of [Wil07, Lemmas 3.6-7], will give that
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Theorem 4.6. Let G be a compact topological group, and let ω be a continuous multiplier on G. Then the twisted
group C∗-algebra C∗ω(G) decomposes into a direct sum:

C∗ω(G) ∼=
⊕

[π]∈Ĝω

Mdπ (C),

where the isomorphism is given by the map f 7→ (πC(f))[π]∈Ĝω . (Cf. [Lan98, Theorem III.1.8.1].)
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